GROTHENDIECK R-POINTS

Recall that given a map of commutative rings $\phi : A \to B$, we have a map $\Phi : \text{Spec } A \to \text{Spec } B$ given by taking pre-images of prime ideals.

Proposition 1.1 Let $\phi : A \to B$ be a map of commutative rings such that B is finitely generated as an A-module. Then Φ is a closed map.

Proof: Let $V(J) \subset \text{Spec } B$ be a closed set. We know from PS 4 that $\Phi(V(J)) = V(I)$, where $I = \phi^{-1}(J)$. We want to show that $\Phi(V(J))$ is closed, i.e. $\Phi(V(J)) = V(I)$. Equivalently we want the far left map

$$
\begin{array}{ccc}
\text{Spec } (B/J) & \to & \text{Spec } B \\
\downarrow & & \downarrow \Phi \\
\text{Spec } (A/I) & \to & \text{Spec } A
\end{array}
$$

to be surjective. Here we are identifying $V(I)$ with $\text{Spec } (A/I)$ and $V(J)$ with $\text{Spec } (B/J)$. Note that by definition, $A/I \hookrightarrow B/J$ is injective. Thus, we are reduced to showing that if $A \hookrightarrow B$ then $\text{Spec } B \twoheadrightarrow \text{Spec } A$. Let $\mathfrak{p} \in \text{Spec } A$. Then consider the following commutative diagram:

$$
\begin{array}{ccc}
\text{Spec } B_{\mathfrak{p}}/B_{\mathfrak{p}} & \to & \text{Spec } B \\
\downarrow & & \downarrow \\
\text{Spec } A_{\mathfrak{p}}/A_{\mathfrak{p}} & \to & \text{Spec } A
\end{array}
$$

By Nakayama’s Lemma, $B_{\mathfrak{p}}/B_{\mathfrak{p}} \neq 0$, so $\text{Spec } B_{\mathfrak{p}}/B_{\mathfrak{p}}$ is non-empty. Since $A_{\mathfrak{p}}/A_{\mathfrak{p}}$ is a field, $\text{Spec } A_{\mathfrak{p}}/A_{\mathfrak{p}}$ has one point. Therefore, the far left map is surjective. This completes the proof because $\mathfrak{p} \in \text{Spec } A$ has horizontal pre-image $B_{\mathfrak{p}}$, which has horizontal pre-image 0. By commutativity of the diagram, we obtain a pre-image in $\text{Spec } B$.

In what follows, let k be algebraically closed, and let A be a finitely generated k-algebra. Recall that $\text{Specm } A$ denotes the set of maximal ideals in A. Consider the natural k-algebra structure on $\text{Funct}(\text{Specm } A, k)$. We have a map

$$
A \to \text{Funct}(\text{Specm } A, k)
$$

which comes from the Weak Nullstellensatz as follows. Maximal ideals $\mathfrak{m} \subset A$ are in bijection with maps $\varphi_{\mathfrak{m}} : A \to k$ where $\ker(\varphi_{\mathfrak{m}}) = \mathfrak{m}$, so we define $a \mapsto [\mathfrak{m} \mapsto \varphi_{\mathfrak{m}}(a)]$. If A is reduced, then this map is injective because if $a \in A$ maps to the zero function, then $a \in \cap \mathfrak{m} \Rightarrow a$ is nilpotent $\Rightarrow a = 0$.

Definition 1.1 A function $f \in \text{Funct}(\text{Specm } A, k)$ is called algebraic if it is in the image of A under the above map. (Alternate words for this are polynomial and regular.)

Let A and B be finitely generated k-algebras and $\phi : A \to B$ a homomorphism. This yields a map $\Phi : \text{Specm } A \to \text{Specm } B$ which comes from the Weak Nullstellensatz as follows. Maximal ideals $\mathfrak{m} \subset A$ are in bijection with maps $\varphi_{\mathfrak{m}} : A \to k$ where $\ker(\varphi_{\mathfrak{m}}) = \mathfrak{m}$, so we define $a \mapsto [\mathfrak{m} \mapsto \varphi_{\mathfrak{m}}(a)]$. If A is reduced, then this map is injective because if $a \in A$ maps to the zero function, then $a \in \cap \mathfrak{m} \Rightarrow a$ is nilpotent $\Rightarrow a = 0$.
Specm $B \to$ Specm A given by taking pre-images (see PS4 problem 7).

Definition 1.2 A map $\Phi : \text{Specm } B \to \text{Specm } A$ is called algebraic if it comes from a homomorphism ϕ as above.

To demonstrate how these definitions relate to one another we have the following proposition.

Proposition 1.2 A map $\Phi : \text{Specm } B \to \text{Specm } A$ is algebraic if and only if for any algebraic function $f \in \text{Funct}(\text{Specm } A, k)$, the pullback $f \circ \Phi \in \text{Funct}(\text{Specm } B, k)$ is algebraic.

Proof: [\Rightarrow] Suppose that Φ is algebraic. It suffices to check that the following diagram is commutative:

\[
\begin{array}{ccc}
\text{Funct}(\text{Specm } A, k) & \xrightarrow{- \circ \Phi} & \text{Funct}(\text{Specm } B, k) \\
\uparrow & & \uparrow \\
A & \xrightarrow{\phi} & B
\end{array}
\]

where $\phi : A \to B$ is the map that gives rise to Φ.

[\Leftarrow] Suppose that for all algebraic functions $f \in \text{Funct}(\text{Specm } A, k)$, the pull-back $f \circ \Phi$ is algebraic. Then we have an induced map, obtained by chasing the diagram counter-clockwise:

\[
\begin{array}{ccc}
\text{Funct}(\text{Specm } A, k) & \xrightarrow{- \circ \Phi} & \text{Funct}(\text{Specm } B, k) \\
\uparrow & & \uparrow \\
A & \xrightarrow{\phi} & B
\end{array}
\]

From ϕ, we can construct the map $\Phi' : \text{Specm } B \to \text{Specm } A$ given by $\Phi'(m) = \phi^{-1}(m)$. I claim that $\Phi = \Phi'$. If not, then for some $m \in \text{Specm } B$ we have $\Phi(m) \neq \Phi'(m)$. By definition, for all algebraic functions $f \in \text{Funct}(\text{Specm } A, k)$, $f \circ \Phi = f \circ \Phi'$ so to arrive at a contradiction we show the following lemma:

Given any two distinct points in $\text{Specm } A = V(I) \subset k^n$, there exists some algebraic f that separates them. This is trivial when we realize that any polynomial function is algebraic, and such polynomials separate points. ■

Definition 1.3 A space (or functor) X is an assignment of every ring R to a set $X(R)$ such that for any homomorphism $\alpha : R \to R'$, there exists a map of sets $X(\alpha) : X(R) \to X(R')$. Furthermore,

(i) If $\alpha = \text{id}$, then $X(\alpha) = \text{id}$.

(ii) If $\alpha : R \to R'$ and $\beta : R' \to R''$ then $X(\beta \circ \alpha) = X(\beta) \circ X(\alpha)$.

Example: Any ring A gives rise to a space Spec A defined as follows:

\[(\text{Spec } A)(R) := \text{Hom}_{k-\text{alg}}(A, R) \]

Definition 1.4 Let X and Y be spaces. A map of spaces (or natural transformation) $\Phi : X \to Y$ is an
assignment for any R, $\Phi : X(R) \to Y(R)$ such for any homomorphism $\alpha : R \to R'$ the following diagram commutes:

$$
\begin{array}{c}
X(R) \xrightarrow{\Phi_R} Y(R) \\
\downarrow{X(\alpha)} & \downarrow{Y(\alpha)} \\
X(R') \xrightarrow{\Phi_{R'}} Y(R')
\end{array}
$$

Example: Let $\varphi : A \to B$ be a ring homomorphism. This yields a map of spaces from $\text{Spec } B \to \text{Spec } A$ by pre-composition. It satisfies the axioms since the following diagram commutes.

$$
\begin{array}{c}
\text{Hom}(B, R) \xrightarrow{-\circ \varphi} \text{Hom}(A, R) \\
\downarrow{\circ -} & \downarrow{\circ -} \\
\text{Hom}(B, R') \xrightarrow{-\circ \varphi} \text{Hom}(A, R')
\end{array}
$$

It turns out that such maps of spaces are the only ones from $\text{Spec } B \to \text{Spec } A$. More precisely,

Proposition 1.3 *(Yoneda’s Lemma)* For two k-algebras A and B, there is a natural bijection between maps of k-algebras from $A \to B$ and maps of spaces $\text{Spec } B \to \text{Spec } A$, given by pre-composition.

Proof: This was problem 4 on PS6, so we omit the proof here. ■

Proposition 1.4 Let X be a space. Then we have $\text{Hom}_{\text{spaces}}(\text{Spec } R, X) = X(R)$.

Proof: Let Φ be a map of spaces, so we have an assignment $\Phi_R : (\text{Spec } R)(R) \to X(R)$. Since $(\text{Spec } R)(R) = \text{Hom}(R, R)$ we can take $\Phi_R(\text{id}) \in X(R)$. Conversely, suppose we are given an element $x \in X(R)$. We want for each R' a map from $\text{Hom}(R, R') \to X(R')$. We define such a map as follows. If $\varphi : R \to R'$ then

$$
\varphi \mapsto X(\varphi)(x) \in X(R')
$$

It is trivial to check that this is indeed a map of spaces, and that the two constructions are inverses of each other. ■

Proposition 1.5 *(Cayley-Hamilton Theorem)*

Proof: ?
HOMOLOGICAL ALGEBRA

Let \(R \) be a commutative ring.

Definition 2.1 A complex \(M^\bullet \) is a sequence of \(R \)-modules \(\{M^i\} \) with maps \(d^i : M^i \to M^{i+1} \)

\[
\cdots \to M^{-2} \xrightarrow{d^{-2}} M^{-1} \xrightarrow{d^{-1}} M^0 \xrightarrow{d^0} M^1 \xrightarrow{d^1} M^2 \xrightarrow{d^2} \cdots
\]

such that \(d^i \circ d^{i-1} = 0 \), i.e. \(\text{Im} \, d^{i-1} \subset \ker \, d^i \).

Definition 2.2 The \(i \)-th cohomology is the quotient module

\[
H^i(M^\bullet) := \ker d^i / \text{Im} \, d_{i-1}^i
\]

A complex is called acyclic if it is exact at each index, i.e. \(H^i(M^\bullet) = 0 \) for all \(i \).

Definition 2.3 We define \(\text{Hom}_R(M^\bullet, N^\bullet) \) to be the set of maps of complexes from \(M^\bullet \to N^\bullet \). Such a map is an element \(\{\varphi^i\} \in \prod_i \text{Hom}_R(M^i, N^i) \) such that for all \(i \), the following diagram is commutative.

\[
\begin{array}{ccc}
M^i & \xrightarrow{d^i_M} & M^{i+1} \\
\varphi^i & \downarrow & \varphi^{i+1} \\
N^i & \xrightarrow{d^i_N} & N^{i+1}
\end{array}
\]

Proposition-Construction 2.1 A map of complexes \(\varphi : M^\bullet \to N^\bullet \) induces a map of cohomologies \(H^i(M^\bullet) \to H^i(N^\bullet) \) for all \(i \).

Proof: We define the map by restricting \(\varphi^i \) to \(\ker d^i_M \). Since each square is commutative, \(\varphi^i \) maps \(\ker d^i_M \to \ker d^i_N \) and \(\text{Im} \, d_{i-1}^M \to \text{Im} \, d_{i-1}^N \). Thus, the induced map is well-defined on \(H^i(M^\bullet) \). □

Definition 2.4 A map of complexes is a quasi-isomorphism if it induces an isomorphism of cohomologies.

Definition 2.5 Let \(\varphi \) and \(\psi \) be maps of complexes from \(M^\bullet \to N^\bullet \). A homotopy from \(\varphi \) to \(\psi \) is an element \(\{h^i\} \in \prod_i \text{Hom}_R(M^i, N^i) \) such that

\[
\varphi^i - \psi^i = h^{i+1} \circ d^i_M + d^i_{N} \circ h^i
\]

Lemma 2.1 If \(\varphi \) and \(\psi \) are homotopic, then their induced maps of cohomologies coincide.

Proof: Let \(m \in \ker(d^i_M) \). Then

\[
\varphi^i(m) - \psi^i(m) = h^{i+1} \circ d^i_M(m) + d^i_{N} \circ h^i(m) = d^i_{N} \circ h^i(m) \in \text{Im}(d^i_{N-1})
\]

which is zero in the cohomology \(H^i(N^\bullet) \). □
Proposition 2.1 If we have a short exact sequence of complexes $0 \rightarrow M^1_\bullet \rightarrow M^2_\bullet \rightarrow M^3_\bullet \rightarrow 0$, this induces a long exact sequence of cohomologies:

$$\cdots \rightarrow H^{i-1}(M^3_\bullet) \rightarrow H^i(M^1_\bullet) \rightarrow H^i(M^2_\bullet) \rightarrow H^{i+1}(M_1) \rightarrow \cdots$$

Proof: This was problem 1(b) on PS7, so we omit the proof here. ■

Definition 2.6 A map is null-homotopic if it is homotopic to the zero map.

Definition 2.7 A map $\varphi : M^\bullet \rightarrow N^\bullet$ is a homotopy equivalence if there exists some $\psi : N^\bullet \rightarrow M^\bullet$ such that

$$\text{id}_{N^\bullet} \simeq \varphi \circ \psi$$
$$\text{id}_{M^\bullet} \simeq \psi \circ \varphi$$

where \simeq denotes homotopy.

Lemma 2.2 A homotopy equivalence is a quasi-isomorphism.

Proof: This follows directly from the definition.

Example: Not every quasi-isomorphism is a homotopy equivalence. Consider the complex

$$\cdots \rightarrow 0 \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \rightarrow 0 \rightarrow \cdots$$

so $H^0 = \mathbb{Z}/2\mathbb{Z}$ and all cohomologies are 0. We have a quasi-isomorphism from the above complex to the complex

$$\cdots \rightarrow 0 \rightarrow 0 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0 \rightarrow 0 \rightarrow \cdots$$

but no inverse can be defined (no map from $\mathbb{Z}/2\mathbb{Z} \rightarrow \mathbb{Z}$).

Definition 2.8 If M^\bullet is a complex then for any integer k, we define a new complex $M^\bullet[k]$ by shifting indices, i.e. $(M^\bullet[k])^i := M^{i+k}$.

Definition 2.9 If $f : M^\bullet \rightarrow N^\bullet$ is a map of complexes, we define a complex $\text{Cone}(f) := \{N^i \oplus M^{i+1}\}$ with differential

$$d(n^i, m^{i+1}) := (d^N n_i) + (-1)^i \cdot f(m^{i+1}, d^M m^{i+1})$$

Remark: This is a special case of the total complex construction to be seen later.

Proposition 2.2 A map $f : M^\bullet \rightarrow N^\bullet$ is a quasi-isomorphism if and only if $\text{Cone}(f)$ is acyclic.

Proof: Note that by definition we have a short exact sequence of complexes

$$0 \rightarrow N^\bullet \rightarrow \text{Cone}(f) \rightarrow M^\bullet[1] \rightarrow 0$$
so by Proposition 2.1, we have a long exact sequence

\[\cdots \to H^{i-1}(\text{Cone}(f)) \to H^i(M) \to H^i(N) \to H^i(\text{Cone}(f)) \to \cdots \]

so by exactness, we see that \(H^i(M) \cong H^i(N) \) if and only if \(H^{i-1}(\text{Cone}(f)) = 0 \) and \(H^i(\text{Cone}(f)) = 0 \). Since this is the case for all \(i \), the claim follows. \(\blacksquare \)

Definition 2.10 Let \(M^\bullet \) and \(N^\bullet \) be complexes. We define the inner Hom complex \((\text{Hom}(M^\bullet, N^\bullet))^\bullet\) as:

\[
(\text{Hom}(M^\bullet, N^\bullet))^i := \prod_n \text{Hom}(M^n, N^{n+i})
\]

with differential \(d \varphi(m^n) := d_N^{n+1} \circ \varphi^n(m^n) + (-1)^{i+1} \cdot \varphi^{n+1} \circ d_M^n(m^n) \).

Remark: From the definition of the inner Hom complex, we have that \(\ker(d^0) = \text{Hom}(M^\bullet, N^\bullet) \), the usual maps of complexes. Similarly, \(\text{Im}(d^{-1}) \) are those maps that are null-homotopic. Thus, the cohomology \(H^0((\text{Hom}(M^\bullet, N^\bullet))^\bullet) \) can be thought of as maps of complexes, up to homotopy. This is denoted \(h\text{Hom}(M^\bullet, N^\bullet) := H^0((\text{Hom}(M^\bullet, N^\bullet))^\bullet) \).

Lemma 2.3 Let \(M^\bullet \) be an acyclic complex. Let \(P^\bullet \) be a complex of projective modules that is bounded from above, i.e. \(P^n = 0 \) for \(i > 0 \). Then the complex \(\text{Hom}(P^\bullet, M^\bullet) \) is acyclic.

Proof: This can be shown by a simple diagram chase. \(\blacksquare \)

Corollary 2.1 Let \(M_1^\bullet \to M_2^\bullet \) be a quasi-isomorphism, and let \(P^\bullet \) be as in the lemma above. Then \(\text{Hom}(P^\bullet, M_1^\bullet) \to \text{Hom}(P^\bullet, M_2^\bullet) \) is a quasi-isomorphism (let us call this map \(\phi \)).

Proof: Consider the acyclic complex \(\text{Cone}(f) \). By the lemma, \(\text{Hom}(P^\bullet, \text{Cone}(f)) \) is acyclic. We want to show that \(\text{Cone}(\phi) \) is acyclic. I claim that the two complexes are isomorphic:

\[
\text{Hom}(P^\bullet, M_2^\bullet) \oplus \text{Hom}(P^\bullet, M_1^\bullet)^{i+1} \cong \prod_n \text{Hom}(P^n, M_2^{n+i}) \\
\text{Hom}(P^n, M_1^{n+i+1})
\]

which is true by the universal property of the direct sum. It can be checked that the differentials are the same. \(\blacksquare \)

Proposition 2.3 Let \(M \) be an \(R \)-module.

(i) There exists a complex of projective modules called the **projective resolution** of \(M \):

\[
\begin{array}{cccccccc}
\cdots & \to & P^{-2} & \to & P^{-1} & \to & P^0 & \to & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
& & & & M & & & & \\
\end{array}
\]

such that \(H^0(P^\bullet) = M \) and \(H^i(P^\bullet) = 0 \) for \(i \neq 0 \).
(ii) If we have two such resolutions P_1^\bullet and P_2^\bullet, then there exist unique (up to homotopy) maps of complexes α and β such that $\alpha \circ \beta = \text{id}$, $\beta \circ \alpha = \text{id}$, and the triangle below commutes (up to homotopy):

![Diagram]

Proof: (i) Since free R-modules are projective, we can just take a free resolution, i.e. let P^0 be a free module surjecting onto M with kernel K^0, P^1 a free module surjecting onto K^0 and so on.

(ii) For this, we consider M as a complex:

$$\cdots \rightarrow 0 \rightarrow M \rightarrow 0 \rightarrow \cdots$$

Since $\text{Cone}(\phi)$ is acyclic, we have that ϕ is a quasi-isomorphism. In particular,

$$H^0(\text{Hom}(P_1^\bullet, P_2^\bullet)) \simeq H^0(\text{Hom}(P_1^\bullet, M))$$

The resolution gives us a map of complexes $P_1^\bullet \rightarrow M^\bullet$, i.e. an element of the right-hand side. The corresponding element of the left-hand side is α. An analogous construction yields β, and they are inverses by uniqueness of the construction. □

Definition 2.11 Let M and N be R-modules. Let P^\bullet be a projective resolution for M. We define

$$\text{Tor}_i^R(M, N) := H^{-i}(P^\bullet \otimes_A N)$$

Remark: $\text{Tor}_0^R(M, N) = \text{coker}(P^{-1} \otimes N \rightarrow P^0 \otimes N) \simeq \text{coker}(P^{-1} \rightarrow P^0) \otimes N \simeq M \otimes N$, so Tor can be seen as a generalization of the tensor product. Also, as a direct consequence of this definition, we see that M is flat if and only if $\text{Tor}_1^R(M, N) = 0$ for all R-modules N.

Proposition 2.4 Let M and N be R-modules. Then

(i) $\text{Tor}_i^R(M, N)$ is independent of the choice of projective resolution.

(ii) $\text{Tor}_i^R(M, N) \simeq \text{Tor}_i^R(N, M)$, despite the asymmetry in the definition.

Proof: (i) If we take two different projective resolutions P_1^\bullet and P_2^\bullet, then by proposition 2.3(ii), we have α and β which induce isomorphisms on the cohomologies:

$$P_1^\bullet \otimes N \xrightarrow{\alpha} P_2^\bullet \otimes N$$

(ii) Let P^\bullet be a projective resolution for M and Q^\bullet a projective resolution for N. Consider the bi-complex $P^\bullet \otimes Q^\bullet$ and define $\text{Tot}(P^\bullet \otimes Q^\bullet)$ complex with n-th term

$$\bigoplus_{i+j=n} P^i \otimes Q^j$$

and differential $d^{i,j}(m^{i,j}) := d^i_{m^{i,j}} + (-1)^i \cdot d^j_{m^{i,j}}$. From problem 3 of PS7, we see that this is indeed a complex, and there is a canonical quasi-isomorphism from $\text{Tot}(P^\bullet \otimes Q^\bullet)$ to $P^\bullet \otimes N$ and to $M \otimes Q^\bullet$. □
Corollary 2.2 If $0 \to M_1 \to M_2 \to M_3$ is a short exact sequence of R-modules, then for any R-module N, there exists a long exact sequence:

$$\cdots \to \text{Tor}_i^R(M_1, N) \to \text{Tor}_i^R(M_2, N) \to \text{Tor}_i^R(M_3, N) \to \text{Tor}_{i-1}^R(M_1, N) \to \cdots$$

Proof: Take a projective resolution Q^\bullet for N. Since projective implies flat, we have a short exact sequence of complexes:

$$0 \to M_1 \otimes Q^\bullet \to M_2 \otimes Q^\bullet \to M_3 \otimes Q^\bullet \to 0$$

the result follows from applying the long exact cohomology sequence construction. ■

Definition 2.12 Let M and N be R-modules. Let P^\bullet be a projective resolution for M. Consider the complex:

$$0 \to \text{Hom}(P^0, N) \to \text{Hom}(P^{-1}, N) \to \text{Hom}(P^{-2}, N) \to \cdots$$

We define $\text{Ext}_R^i(M, N)$ to be the i-th cohomology of this complex.

Remark: From the definition, $\text{Ext}_R^0(M, N) = \text{Hom}(M, N)$ and M is projective if and only if $\text{Ext}_R^1(M, N) = 0$ for all R-modules N.

Definition 2.13 A module I is injective if given an injection $L_1 \hookrightarrow L_2$ and a map from $L_1 \to I$, there exists a map from $L_2 \to I$ such that the following triangle commutes:

\[
\begin{array}{ccc}
L_1 & \longrightarrow & L_2 \\
\downarrow & & \downarrow \\
\quad & & I
\end{array}
\]

Proposition 2.5 Any module can be imbedded into an injective module.

Proof: This was problem 2 on PS7, so we omit the proof here. ■

Remark: This allows us to take injective resolutions $0 \to M \to I^0 \to I^1 \to \cdots$ that are unique up to homotopy (also shown on PS7).

Proposition 2.6 Let M and N be R-modules. Let I^\bullet be a projective resolution for M. Consider the complex:

$$0 \to \text{Hom}(M, I^0) \to \text{Hom}(M, I^1) \to \text{Hom}(M, I^2) \to \cdots$$

We can define $\text{Ext}_R^i(M, N)$ as the i-th cohomology of this complex as well.

Proof: Use the same argument as for Tor symmetry (with the Tot complex).
Proposition 2.7 (i) If $0 \to N_1 \to N_2 \to N_3$ is a short exact sequence of R-modules, then for any R-module M, there exists a long exact sequence:

$$\cdots \to \text{Ext}^i_R(M, N_1) \to \text{Ext}^i_R(M, N_2) \to \text{Ext}^i_R(M, N_3) \to \text{Ext}^{i+1}_R(M, N_1) \to \cdots$$

(ii) If $0 \to M_1 \to M_2 \to M_3$ is a short exact sequence of R-modules, then for any R-module N, there exists a long exact sequence:

$$\cdots \to \text{Ext}^i_R(M_3, N) \to \text{Ext}^i_R(M_2, N) \to \text{Ext}^i_R(M_1, N) \to \text{Ext}^{i+1}_R(M_3, N) \to \cdots$$

Proof: Use the same argument as for the Tor long exact sequence.