Math 250a: Higher Algebra
Problem Set #9 (6 December 2004):
Quaternion algebras

A bit more about Baer multiplication:

1. Let A be an abelian group and G any group acting on A. For any extension $1 \to A \xrightarrow{i} E \xrightarrow{\pi} G \to 1$ consistent with this action, let E^o be the extension $1 \to A \xrightarrow{-i} E \xrightarrow{\pi} G \to 1$ with the opposite embedding of A in E. [Why do E,E^o have the same G-action on A?] Prove that E^o is the inverse of E in two ways: by identifying $(E,E^o)/Q$ with the semidirect product $A \rtimes G$, and by showing that E,E^o correspond to inverse elements of $H^2(G,A)$.

Note that the formula for E^o is what one might expect from the special case $(G,A) = (\text{Gal}(L/k),L^*)$ and our results about the opposite of a central simple algebra.

In the next two problems, we describe generalized quaternion algebras over an arbitrary field k not of characteristic 2.

2. i) For any (commutative) field k, define a map $x \mapsto \bar{x}$ on $M_2(k)$ by $\bar{x} = \text{Tr}(x) \cdot 1 - x$. Here $\text{Tr}(x)$ is the trace of x as a 2×2 matrix, and 1 is the 2×2 identity matrix, which is the unit element of $M_2(k)$. Prove that this map is an anti-involution, i.e., that it satisfies the identities $\bar{\bar{x}} = x$ and $\bar{x+y} = \bar{x} + \bar{y}$. [This can be done either by explicit computation or via a relation between \bar{x} and the transpose of x.]

ii) Now suppose that A/k is any central simple algebra with $\dim_k A = 4$. Define a map $x \mapsto \bar{x}$ on A by $\bar{x} = \text{Tr}(x) \cdot 1 - x$, where $\text{Tr}(x)$ is the reduced trace of x and 1 is the unit element of A. Prove that this map is an anti-involution.

Let A_0 be the kernel of Tr; it is a k-vector subspace of A of dimension $4 - 1 = 3$. Let $N : A \to k$ be the reduced norm, so $N(x) = x\bar{x}$. This is a quadratic form on A, and the associated bilinear form is

$$(x,y) = N(x+y) - N(x) - N(y) = xy \bar{y} + y\bar{x} = \text{Tr}(xy).$$

Note that if $x \in A_0$ then $N(x) = -x^2$.

3. i) Prove that if $x,y \in A_0$ with $N(x) = N(y) \neq 0$ then x,y are conjugate in A.

ii) Prove that there exist $i \in A_0$ with $N(i)$ nonzero. Fix one such i, and let $c = N(i)$. Since also $N(-i) = N(i)$, by part (i) there exist invertible $z \in A$ such that $iz = -\bar{z}i$. Show that $iz = -\bar{z}i$, and hence that $ij = -ji$ where $j := z - \bar{z}$. Show that $j \in A_0$ and $j \neq 0$.

iii) Now let $k = ij = -ji$. Show that $k \in A_0$ and $ki = -ik = cj$. Let $d = N(j) = -j^2$, and determine jk,kj,k^2 in terms of c,d,i,j,k. In particular show that i,j,k are pairwise orthogonal for the bilinear form (\cdot,\cdot).

iv) If A is a division algebra, prove that i,j,k are linearly independent, and
thus that $A = k + ki + kj + kk$. What happens if $A = M_2(k)$?

v) Since we know the multiplication table of $\{1, i, j, k\}$, we have determined A.

Show that for any nonzero c, d the algebra obtained in this way is a division ring if and only if there are no $(r, s, t) \in k^3$ such that $cr^2 + ds^2 + cdt^2 = 0$ other than $(r, s, t) = (0, 0, 0)$.

It can be shown that every nondegenerate quadratic form on k^3 is equivalent to a multiple of $cr^2 + ds^2 + cdt^2 = 0$ for some $c, d \in k^*$. These c, d are not uniquely determined by the form, but the central simple algebras A associated to the quadratic form is uniquely determined by the equivalence class of the quadratic form up to scaling, and vice versa. Starting from part (i) we can also identify $A^*/\{\pm 1\}$ with the group of k-linear transformations of A_0 of determinant 1 that preserve the bilinear form (\cdot, \cdot). This generalizes the identification of $H^*/\{\pm 1\}$ with $SO_3(\mathbb{R})$. If we regard $cr^2 + ds^2 + cdt^2 = 0$ as a conic in the projective plane over k, we get the simplest example of a “Brauer-Severi variety” associated to a central simple algebra.

If $k = \mathbb{R}$ and A is a division ring, then clearly $c, d > 0$; we may then scale i, j by $c^{1/2}, d^{1/2}$ to identify A with H. This completes the cohomology-free proof that \mathbb{R}, \mathbb{C} and H are the only division algebras of finite dimension over \mathbb{R}. Likewise it can be shown that for each p there is a unique division algebra H_p with center \mathbb{Q}_p and of dimension 4 over \mathbb{Q}_p. For even p we constructed H_p in the seventh problem set. For our final problem, we treat the even case:

4. Find $c, d \in \mathbb{Q}_2^*$ that yield a division ring H_2 with center \mathbb{Q}_2 and of dimension 4 over \mathbb{Q}_2.

You won’t have to look very long for suitable c, d!

Problems 1–4 are due in class Monday, December the 13th.

5. Send me e-mail, or schedule a time to meet with me, to discuss your final paper topic.