Math 250a: Higher Algebra
Problem Set #2 (21 September 2001): Galois Theory II

1. Prove that \(\mathbb{Z} \) is the only subring of \(\mathbb{Q} \) that is finitely generated as a module over \(\mathbb{Z} \), and conclude that \(\mathbb{Z} \) is integrally closed in \(\mathbb{Q} \).

2. (Proof of the result mentioned at the end of the notes on integral closure) Let \(A \) be a subring of some field \(F \), and assume that \(A \) is integrally closed in \(F \). Let \(u \) be an element of some field \(K/F \) which is algebraic over \(F \) and integral over \(A \). Prove that the minimal monic polynomial of \(u \) is contained in \(A[X] \). (Hint: Factor this polynomial over its splitting field.)

3. (Fermat’s last theorem in \(F[X] \)) Suppose \(A, B, C \in F[X] \) are polynomials satisfying \(A + B + C = 0 \), and let \(W = AB^e - A'B \). Show that if \(r \) is a root of \(A, B, \) or \(C \) of multiplicity \(m \) in some extension field \(K/F \) then \(r \) is a root of \(W \) of multiplicity at least \(m - 1 \).

Use this to prove that if \(F \) is a field of characteristic zero then for each integer \(n \geq 3 \) the Fermat equation \(x^n + y^n = z^n \) has no solution in relatively prime polynomials \(x, y, z \in F[X] \) of positive degree.

[What happens in characteristic \(p > 0 \)? Can you generalize to \(x^n + y^n + z^n = t^n \), etc.?]

4. (Problem 2 of Jacobson 4.4) Let \(F \) be a field of characteristic \(p \). Prove that every irreducible polynomial \(f \in F[X] \) can be written as \(g(X^{p^e}) \) for some irreducible separable polynomial \(g \in F[X] \) and some nonnegative integer \(e \). Use this to show that every root of \(f \) (in a splitting field of \(f \)) has the same multiplicity \(p^e \).

5. (Problem 4 of Jacobson 4.5) Let \(E = \mathbb{C}(t) \), the field of rational functions over \(\mathbb{C} \) in a transcendental \(t \). Fix a cube root of unity \(\omega \in \mathbb{C} \) [that is, \(\omega \neq 1 \) such that \(\omega^3 = 1 \); for example, \(\omega = e^{2\pi i/3} = \frac{1}{2}(-1 + \sqrt{-3}) \)]. Let \(\sigma, \tau \) be the following automorphisms of \(E \):

\[
(\sigma f)(t) := f(\omega t); \quad (\tau f)(t) := f(1/t).
\]

Show that \(\sigma^3 = \tau^2 = (\sigma \tau)^2 = \text{id} \). Determine the structure of the group \(G \) generated by \(\sigma \) and \(\tau \), and prove that the subfield \(F \) of \(E \) fixed by \(G \) is \(\mathbb{C}(u) \) where \(u = t^3 + t^{-3} \).

6. (Problem 3 of Jacobson 4.4) Let \(F \) be a field of characteristic \(p \). A polynomial \(f \in F[X] \) is called a \(p \)-polynomial if it is of the form \(\sum_{i=0}^m a_i X^{p^i} \) for some \(a_i \in F \). Prove that a polynomial \(f \in F[X] \) of positive degree is a \(p \)-polynomial if and only if its roots in a splitting field of \(f \) are closed under addition and each root has the same multiplicity which is of the form \(p^e \) for some nonnegative integer \(e \).

If you already know about finite fields, you can generalize this as follows: let \(q \) be a power of the prime \(p \), and \(F \) a field of characteristic \(p \) containing the \(q \)-element field \(\mathbb{F}_q \); a polynomial \(f \in F[X] \) is called a \(q \)-polynomial if it is of the form \(\sum_{i=0}^m a_i X^{q^i} \) for some \(a_i \in F \). Then a \(p \)-polynomial is a \(q \)-polynomial if and only if its roots are an \(\mathbb{F}_q \)-vector subspace of the splitting field, and their common multiplicity \(p^e \) is a power of \(q \).]

7. (Problem 3 of Jacobson 4.5) Let \(F \) be a field of characteristic \(p \), and \(a \) an element of \(F \) not in \(\{ b^p - b \mid b \in F \} \). Prove that the polynomial \(X^p - X - a \) is irreducible over \(F \), and determine its Galois group.

Problem set is due in class Friday the 28th.