Math 155: Designs and groups
Handout #3:

Simplicity of $\text{PSL}_2(F)$ ($|F| \geq 4$) and $\text{PSL}_n(F)$ ($n \geq 3$) — Outline

0. Let F be a finite field of q elements. $\text{PSL}_n(F)$ is a normal subgroup [indeed the commutator subgroup, but we won’t need this] of $\text{PGL}_n(F)$ with index $\gcd(n, q - 1)$, and is generated by “transvections” because $\text{SL}_n(F)$ is; indeed even coordinate transvections suffice. (A coordinate transvection is a matrix with 1’s on the diagonal and a single nonzero off-diagonal entry. A linear transformation $T: F^n \rightarrow F^n$ that is of that form for some choice of basis is a transvection; an equivalent coordinate-free criterion is: $T - I$ has rank 1 and square zero.) When $n = 2$ the transvections in $\text{PSL}_2(F)$ are precisely the fractional linear transformations of $\mathbb{P}^1(F)$ with exactly one fixed point; if that point is ∞, the transformation is $x \mapsto x + c$ for some $c \in F^*$.

1. Let $G = \text{PSL}_2(F)$ and assume H is a normal subgroup of G. If H contains a transvection then it contains all of them, and thus coincides with G. (The G-conjugates of $x \mapsto x + c$ include $x \mapsto x + c'$ where c'/c is a square in F, and these c' additively generate F. This works even if F is infinite as long as it is not of characteristic 2, or of characteristic 2 and perfect.)

2. Assume then that H contains no transvections. Let $G_1 \subset G$ be the stabilizer of ∞, which is the group of affine linear transformations $x \mapsto ax + b$ with $a \in F^{*2}$. Then $H_1 := H \cap G_1$ is normal in G_1. Since the commutator of $x \mapsto ax + b$ with $x \mapsto x + 1$ is a transvection unless $a = 1$, it follows that $H_1 = \{\text{id}\}$.

3. Now assume $H \neq \{\text{id}\}$ and let $h \in H$ be any non-identity element. Let $u = h(\infty)$, and note that $u \neq \infty$ because $h \neq H_1$. Translating the coordinate on $\mathbb{P}^1(F)$ by u (or equivalently replacing h by its conjugate by the transvection $x \mapsto x + u$, a conjugate also contained in $H - \{\text{id}\}$), we may assume $u = 0$. For $a \in F^*$ let $g_a \in G$ be the transformation $x \mapsto ax + b$. Then the commutator $g_a^{-1}h^{-1}g_ah \in H$ fixes ∞, so by the previous paragraph must be the identity element. Thus each g_a commutes with h. Thus if h is $x \mapsto 1/(cx + d)$ then $a^2/(cx + d) = 1/(ca^2x + d)$ for all $a \in F^*$. But then $a^4 = 1$, whence $q \leq 3$ or $q = 5$, and we already know that $\text{PSL}_2(F_5)$ is isomorphic to the simple group A_5, QED.

[NB G does have a nontrivial normal subgroup for $q = 2, 3$.]
The case \(n \geq 3 \) is similar to \(\text{PSL}_2(F) \), but actually easier:

- All transvections are conjugate in \(\text{SL}_n \), not only in \(\text{GL}_n \), because any transvection \(t \) commutes with linear transformations \(g \) of arbitrary determinant. (It suffices to prove this for coordinate transvections, for which \(g \) can be taken to be a diagonal matrix.)

- A normal subgroup \(H \neq \{ \text{id} \} \) of \(\text{PSL}_n(F) \) necessarily contains a non-identity element \(h \) with a stable hyperplane. Indeed for any transvection \(t \) and any \(g \in \text{PSL}_n(F) \) the commutator \(h = gtg^{-1}t^{-1} \) is the product of two transvections \(gtg^{-1} \) and \(t^{-1} \) and so has a fixed subspace of dimension at least \(n - 2 > 0 \). (This is enough because a transvection of \(V \) is also a transvection of the dual space \(V^* \), and a nonzero fixed vector in \(V^* \) yields a stable hyperplane in \(V \).) If \(g \in H \) then \(h \in H \) too, and if \(g \neq \text{id} \) then \(h \neq \text{id} \) for some choice of \(t \), else all transvections \(t \) commute with \(g \) and thus (since these generate \(\text{PSL}_n(F) \)) \(g \) is in the center of \(\text{PSL}_n(F) \) — but that center is trivial.

- The complement of a hyperplane in \(\mathbb{P}^{n-1}(F) \) is an affine \((n-1)\)-space over \(F \); so \(h \) is an affine linear transformation \(v \mapsto Av + b \) for some \(A \in \text{GL}_{n-1}(F) \) and \(b \in F^{n-1} \). The translations \(v \mapsto v + c \) of this affine space correspond to transvections in \(\text{PSL}_n(F) \). If \(A = I \) then \(b \neq 0 \) (since \(h \neq \text{id} \)) and so \(h \) is a transvection. Else let \(c \in F^{n-1} \) be a vector not fixed by \(A \); then the commutator of \(h \) with the \(v \mapsto v + c \) is a nonzero translation and thus yields the desired transvection in \(H \).