1. What is the radius of the largest unramified disk for the map \(f : \Delta \to \mathbb{C} \) given by \(f(z) = e^{z^2} \)? (Recall a disk \(B(p, r) \subset \mathbb{C} \) is *unramified* if there is a holomorphic map \(h : (p, r) \to \Delta \) such that \(f(h(z)) = z \) for all \(z \in B(p, r) \).)

2. Prove that the Little Picard Theorem implies directly that there is a constant \(M > 0 \) such that any holomorphic map \(f : \Delta \to \mathbb{C} - \{0, 1\} \) satisfies \(\|f'\| \leq M \), where the derivative is measured using the hyperbolic metric on the domain and the spherical metric on the range. (Hint: supposing the derivative tends to infinity, construct a nonconstant entire function \(f : \mathbb{C} \to \mathbb{C} - \{0, 1\} \).)

3. Let \(T \subset \mathbb{R}^2 \) be a (closed) Euclidean triangle, and let \(G \subset \text{Isom} (\mathbb{R}^2) \) be the group generated by reflections in the sides of \(T \). (i) Show that the tiles \(T_g = \{g(T) : g \in G\} \) cover \(\mathbb{R}^2 \). (ii) Give an example where every point in \(\mathbb{R}^2 \) belongs to the interior of at most one tile. (iii) Give an example where every point in \(\mathbb{R}^2 \) belongs to the interior of infinitely many tiles. (Hint: the closure of \(G \) is a Lie subgroup of \(\text{Isom} (\mathbb{R}^2) \).)