In the 70s, Mumford discovered p-adic analogues of classical uniformizations of curves and abelian varieties, which generalized Tate’s p-adic uniformization of elliptic curves. Besides its significance for moduli, Mumford’s construction can be also viewed as a highly nontrivial example of rigid analytic geometry. We shall start by reviewing the classical Schottky uniformization of compact Riemann surfaces and then introduce the dictionary between Mumford curves and p-adic Schottky groups. With the aid of the Bruhat-Tits tree of SL(2), we can illustrate examples of Mumford curves whose geometry and arithmetic are rich, and explain why the answer to life, the universe and everything should be changed.