1. For each of the following functions, graph the function and its derivative on a graphing calculator. Then determine the number of critical points of the function.

 (a) \(f(x) = \frac{1}{3}x^3 + x + 1 \)
 (b) \(g(x) = \frac{1}{3}x^3 + 1 \)
 (c) \(h(x) = \frac{1}{4}x^3 - \frac{3}{2}x^2 + 1 \)

2. How many critical points can a generic cubic function \(f(x) = ax^3 + bx^2 + cx + d \) have? Justify your answer.

3. How many local extrema can a cubic function have? Justify your answer.

4. How many inflection points can a cubic function have? Justify your answer.

5. If \(f(x) = ax^3 + bx^2 + cx + d \), what are \(\lim_{x \to \infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \)?

6. How many \(x \)-intercepts can a cubic function have? Justify your answer.

7. Sketch the graph of a cubic function \(f \) that ...

 (a) .. has roots at \(x = -5 \), \(x = 2 \), and \(x = 6 \).
 (b) .. has roots at \(x = -1 \) and \(x = 1 \) only and satisfies \(f(0) = 3 \).
 (c) .. has a roots at \(x = 3 \) only and satisfies \(\lim_{x \to \infty} f(x) = -\infty \).
 (d) .. has a local minimum at \(x = -1 \) and a local maximum at \(x = 3 \).
 (e) .. has an inflection point at \(x = 3 \).

8. Find an algebraic formula for each of the cubic functions described in Question 7.