Math 55a: Honors Advanced Calculus and Linear Algebra

Homework Assignment #8 (8 November 2002):
Linear Algebra IV — “Eigenstuff”

HINT, n.: The hardest of several possible ways to do a proof.¹

1.–10. Solve Exercises 4, 7–12, 15, 16, 21 from Chapter 5 of the textbook (pages 94,95). As usual, \(F \) can be any field, and \(C \) can be any algebraically closed field. Do not assume that vector spaces are finite dimensional unless you must. For #4, remember that Axler’s “null (\(T \))” is our “ker (\(T \))”. For #16, how much of #15 remains true over an arbitrary field?

[#15 has the following important consequence: if \(P \in F[z] \) and \(P(T) = 0 \) for some linear operator \(T \in L(V) \), then every eigenvalue of \(T \) is a root of \(P \). For instance, the only possible eigenvalues of a linear involution are \(\pm 1 \), the roots of \(z^2 - 1 \).]

For the next computational problem, make sure to check your answer against the actual entries of \(A^t \) for the first few \(t \).

11. Let \(A \) be the \(2 \times 2 \) matrix \(\begin{bmatrix} 1 & 7 \\ 6 & 3 \end{bmatrix} \). Find a closed form for (the entries of) \(A^t \) as functions of \(t = 0,1,2,\ldots \). [Hint: Begin by finding the eigenvalues and eigenvectors of the linear transformation corresponding to \(A \).] What happens to \(A^t \) asymptotically as \(t \to \infty \)? What happens if \(A \) is replaced by the matrix \(\begin{bmatrix} 0.2 & 1.2 \\ -0.6 & 1.4 \end{bmatrix} \)?

This problem set is due Monday [sic], 18 November, at the beginning of class.

¹Definitions of Terms Commonly Used in Higher Math, R. Glover et al.; cf. also Prob. 11.