Math 55a: Honors Advanced Calculus and Linear Algebra

Homework Assignment #2 (27 September 2002):
Metrics, topology, continuity, and sequences

Sketch of a proof n. I couldn’t verify all the details, so I’ll break it
down into the parts I couldn’t prove.¹

Please avoid merely “sketching” (as defined in the above quote) a proof. In all
problem sets, you may use the result in one problem (or problem part) to solve
another, even if you have not proved the first one, unless this becomes circular
[exception: when problem B is clearly a generalization of A, don’t use B to
solve A unless you’ve solved B!]. NB the problems are generally
not in order of
difficulty. Problem set is due Friday, Oct. 4, at the beginning of class.
Two different notions of distance between subsets of a metric space:

1. [Distance between subsets of a metric space] For any two subsets
 A, B of a
 metric space X, define the distance d(A, B) between A and B by
 \[d(A, B) := \inf \{d(x, y) : x \in A, y \in B\}\].

 Prove that for any subsets A, B, C of X and any element x ∈ X we have:
 i) d(\overline{A}, \overline{B}) = d(A, B) (where \overline{A}, \overline{B} are the closures of A, B respectively);
 ii) d(\{x\}, A) = 0 if and only if x ∈ A;
 iii) d(A, B ∪ C) = \min\{d(A, B), d(A, C)\};
 iv) d(A, \{x\}) + d(\{x\}, B) ≥ d(A, B).

 Must the triangle inequality d(A, C) + d(C, B) ≥ d(A, B) also hold?

2. [Minkowski distance between nonempty bounded closed subsets] For a sub-
 set A of a metric space X, and a positive real number r, define
 \[N_r(A) := \bigcup_{x \in A} N_r(x)\].

 (Recall that N_r(x) is the radius-r neighborhood of x, a.k.a. the open ball of
 radius r about x; one may visualize N_r(A) as the radius-r neighborhood
 of A. For instance, N_r(∅) = ∅; N_r(\{x\}) = N_r(x); N_r(X) = X; and
 r’ ≥ r ⇒ N_r’(A) ⊇ N_r(A).) For two nonempty, bounded, closed subsets
 A, B of a metric space X, define the Minkowski distance δ(A, B) between A
 and B by
 \[δ(A, B) := \inf\{r : N_r(A) ⊇ B \text{ and } N_r(B) ⊇ A\}\].

 Prove that this defines a metric on the space of nonempty, bounded, closed
 subsets of X.

More about the topology of R, and relation with continuity:

3. Prove that the only subsets of R that are simultaneously open and closed
 are ∅ and R.

¹Definitions of Terms Commonly Used in Higher Math, R. Glover et al.
4. Suppose \(X, Y \) are metric spaces, and that \(X \) has the discrete metric. Find all continuous maps from \(X \) to \(Y \). Find all continuous maps from \(\mathbb{R} \) to \(X \).

Some more topological notions:

5. A topological space is said to be Hausdorff if, for any two distinct elements \(p, q \) of the space, there are disjoint open sets \(U, V \) with \(U \ni p \) and \(V \ni q \). For instance, a metric space is automatically Hausdorff, since we may take \(U \) and \(V \) to be the open balls of radius \(\frac{1}{2}d(p, q) \) about \(p \) and \(q \).
 i) Prove that in a Hausdorff space every single-point set is closed.
 ii) Now let \(X, Y \) be topological spaces with \(Y \) Hausdorff, and let \(f, g \) be any continuous functions from \(X \) to \(Y \). If \(S \subset X \) is a dense subset such that \(f(s) = g(s) \) for all \(s \in S \), prove that \(f = g \), i.e., that \(f(x) = g(x) \) for all \(x \in X \). [Naturally you must use the topological definition of denseness: “\(S \) is dense in \(X \)” means that the only open set in \(X \) disjoint from \(S \) is \(\emptyset \).]

6. [Non-metrizable topologies] Recall that a topology on a set \(X \) is a family \(T \) of subsets of \(X \) which contains \(\emptyset, X \), and the finite intersection and arbitrary union of any sets in \(T \). We noted that the open sets in a metric space constitute a topology, but not all topologies arise in this way; for instance, for any set \(X \) with more than 1 element, \(\{\emptyset, X\} \) is a non-metric topology, because in a metric topology all one-point sets are closed. Suppose now that \(T \) is a non-metric topology on \(X \) containing all complements of one-point sets (so that all one-point sets are closed). Show that \(X \) is infinite, and construct such a topology on a countably infinite set.

7. [Homeomorphism] A homeomorphism between two topological spaces\(^2\) \(X, Y \) is a bijection \(f : X \to Y \) such that both \(f \) and the inverse function \(f^{-1} : Y \to X \) are continuous. Show that a bijection \(f : X \to Y \) is a homeomorphism if and only if \(f \) identifies the topologies of \(X \) and \(Y \), i.e., the open sets of \(Y \) are precisely the images of open sets of \(X \). Two topological spaces \(X, Y \) are said to be homeomorphic if there is a homeomorphism between them. Prove that this is an equivalence relation. Show that any isometry is a homeomorphism. Prove that every open ball in \(\mathbb{R} \) is homeomorphic with \(\mathbb{R} \) but not isometric with \(\mathbb{R} \). (Warning: for this last part it is not enough to exhibit a non-isometric homeomorphism; you must show that no bijection between the ball and \(\mathbb{R} \) is an isometry.)

Convergence and sequences:

8. [Rudin, p.78, Exercise 1] Suppose \(s_n \in \mathbb{R} \). Prove that convergence of \(\{s_n\} \) implies convergence of \(\{|s_n|\} \). Is the converse true?

9. [Another characterization of convergence] Let \(E \) be the subset \(\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\} \) of \(\mathbb{R} \). A sequence \(\{s_n\} \) in an arbitrary metric space \(X \) is equivalent to the map \(\tilde{s} : E \to X \) that takes \(1/n \) to \(s_n \). Show that \(\tilde{E} = E \cup \{0\} \), and prove that \(\{s_n\} \) converges if and only if \(\tilde{s} \) extends to a continuous function on \(\tilde{E} \).

\(^2\)Naturally a “topological space” is a set \(X \) endowed with a topology \(T \) of subsets of \(X \).