STOKES THEOREM II

Maths21a, O. Knill

\[\text{curl}(\nabla \times \mathbf{F}) = \nabla \times (\nabla \times \mathbf{F}) \]

Fundamental theorem of line integrals

\[\int_{r(a)}^{r(b)} \mathbf{F} \cdot d\mathbf{r} = \int_{C} \mathbf{F} \times dS \]

STOKES THEOREM

\[\int_{C} \mathbf{F} \times dS = \int_{S} (\nabla \times \mathbf{F}) \cdot dS \]

REMINDERS:

- **CURL:** \(\mathbf{A} \times \mathbf{B} \)
- **GRAD:** \(\nabla f \)
- **FTL:** \(f \circ \mathbf{F} = 0 \)
- **STOKES:** \(\int_{C} \mathbf{F} \times dS = \int_{S} (\nabla \times \mathbf{F}) \cdot dS \)

Proof:

We already know that \(F = \nabla f \) implies \(\text{curl}(F) = 0 \). To show the converse, we verify that the line integral along any closed curve \(C \) in \(D \) is zero. This is equivalent to the path independence and allows the construction of the potential \(f \) with \(F = \nabla f \).

By assumption, we can deform the curve to a point: if \(r_0(t) \) is the original curve and \(r_1(t) \) is the curve \(r_1(t) = P \) which stays at one point, define a parametrized surface \(S \) by \(r(t, s) = r_1(t) \). By assumption, \(\text{curl}(F) = 0 \) and therefore the flux of \(\text{curl}(F) \) through \(S \) is zero. By Stokes theorem, the line integral along the boundary \(C \) of the surface \(S \) is zero too.

THE NASH PROBLEM. Nash challenged his multivariable class in the movie "A beautiful mind" with a problem, where the region is not simply connected.

Find a region \(X \) of \(\mathbb{R}^3 \) with the property that if \(V \) is the set of vector fields \(F \) on \(\mathbb{R}^3 \) which satisfy \(\text{curl}(F) = 0 \) and \(W \) is the set of vector fields \(F \) which are conservative: \(F = \nabla f \). Then, the space \(V/W \) should be 8 dimensional.

**You solve this problem as an inclass exercise (ICE). The problem is to find a region \(D \) in space, in which one can find 8 different closed paths \(C_i \) so that for every choice of constants \((c_1, ..., c_8) \), one can find a vector field \(F \) which has zero curl in \(D \) and for which \(\int_{C_i} F \cdot dr = c_i \).

One of the many solutions is cut out 8 tori from space. For each torus, there is a vector field \(F_i \) (a vortex ring), which has its vorticity located inside the ring and such that the line integral of a path which winds once around the ring is 1. The vector field \(F = c_1 F_1 + ... + c_8 F_8 \) has the required properties.

CLOSED SURFACES. Surfaces with no boundaries are called closed surfaces. For example, the surface of a donut, or the surface of a sphere are closed surfaces. A half sphere is not closed, its boundary is a circle. Half a doughnut is not closed. Its boundary consists of two circles.

THE ONE MILLION DOLLAR QUESTION. One of the Millennium problems is to determine whether any three dimensional space which is simply connected is deformable to a sphere. This is called the Poincare conjecture.

LINE INTEGRAL IN HIGHER DIMENSIONS. Line integrals are defined in the same way in higher dimensions. \(\int_{C} F \cdot dS \), where is the dot product in \(d \) dimensions and \(dr = x^i dx^i \).

CURL IN HIGHER DIMENSIONS. In \(d \) dimensions, the curl is the field \(\text{curl}(F) = \partial_i F_j - \partial_j F_i \) with \(\binom{d}{2} \) components. In 4 dimensions, it has 6 components. In 2 dimensions it has 1 component, in 3 dimensions, it has 3 components.

SURFACE INTEGRAL IN HIGHER DIMENSIONS. In \(d \) dimensions, a surface element in the \(ij \)-plane is written as \(ds_{ij} \). The flux integral of the curl of \(F \) through \(S \) is defined as \(\int_{S} (\text{curl}(F)) \cdot ds \), where the dot product is \(\sum_{i<j} \text{curl}(F)_{ij} ds_{ij} \).

STOKES THEOREM IN HIGHER DIMENSIONS. If \(S \) is a two dimensional surface in \(d \)-dimensional space and \(C \) is its boundary, then \(\int_{C} \text{curl}(F) \cdot ds = \int_{S} (\nabla \times \mathbf{F}) \cdot dS \).