Diagonalization

Let \(L \) be the line \(y = 2x \) in \(\mathbb{R}^2 \). Let \(\text{ref}_L \) be reflection over \(L \), and let \(A \) be the standard matrix of \(\text{ref}_L \).

1. Find an eigenbasis \(\mathfrak{B} \) for \(A \).

Solution. Let \(\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \) and \(\vec{v}_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \). Then, \(\vec{v}_1 \) lies on the line \(L \), so \(A\vec{v}_1 = \text{ref}_L(\vec{v}_1) = \vec{v}_1 \).

On the other hand, \(\vec{v}_2 \) is perpendicular to \(L \), so \(A\vec{v}_2 = \text{ref}_L(\vec{v}_2) = -\vec{v}_2 \). Thus, \(\vec{v}_1 \) and \(\vec{v}_2 \) are both eigenvectors of \(A \). Since \((\vec{v}_1, \vec{v}_2) \) is clearly a basis of \(\mathbb{R}^2 \), \(\mathfrak{B} = (\vec{v}_1, \vec{v}_2) \) is an eigenbasis for \(A \).

2. Find the \(\mathfrak{B} \)-matrix of \(\text{ref}_L \).

Solution. If \(D \) is the \(\mathfrak{B} \)-matrix of \(\text{ref}_L \), the columns of \(D \) are \([\text{ref}_L(\vec{v}_1)]_{\mathfrak{B}} \) and \([\text{ref}_L(\vec{v}_2)]_{\mathfrak{B}} \). Since \(\text{ref}_L(\vec{v}_1) = \vec{v}_1 = 1 \cdot \vec{v}_1 + 0 \cdot \vec{v}_2 \), \([\text{ref}_L(\vec{v}_1)]_{\mathfrak{B}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \). Since \(\text{ref}_L(\vec{v}_2) = -\vec{v}_2 = 0 \cdot \vec{v}_1 + (-1) \cdot \vec{v}_2 \), \([\text{ref}_L(\vec{v}_2)]_{\mathfrak{B}} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \). So, the \(\mathfrak{B} \)-matrix of \(\text{ref}_L \) is \(D = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \).

3. Find \(A \) (the standard matrix of \(\text{ref}_L \)).

Solution. If \(S = [\vec{v}_1 \, \vec{v}_2] \), then \(A = SDS^{-1} \). In this case, this says that

\[
A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -3/5 & 4/5 \\ 4/5 & 3/5 \end{bmatrix}.
\]

True / False

1. If \(A \) is diagonalizable, then \(A^2 \) is diagonalizable.

Solution. True. Since \(A \) is diagonalizable, there is an invertible matrix \(S \) such that \(S^{-1}AS \) is a diagonal matrix. Then, \(S^{-1}A^2S = (S^{-1}AS)(S^{-1}AS) \) is the product of two diagonal matrices, which is a diagonal matrix. Therefore, \(A^2 \) is diagonalizable.

2. If \(A \) and \(B \) are \(n \times n \) diagonalizable matrices, then \(A + B \) is diagonalizable.

Solution. False. For example, \(A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) and \(B = \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \) are both diagonalizable, but \(A + B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \) is not.

3. If \(A \) and \(B \) are \(n \times n \) diagonalizable matrices with the same eigenvectors, then \(AB \) is diagonalizable.

Solution. True. Since \(A \) is diagonalizable, there is an eigenbasis for \(A \), say \((\vec{v}_1, \ldots, \vec{v}_n) \). Since \(B \) has the same eigenvectors as \(A \), \((\vec{v}_1, \ldots, \vec{v}_n) \) is also an eigenbasis for \(B \). Therefore, if \(S = [\vec{v}_1 \ldots \vec{v}_n] \), \(S^{-1}AS \) and \(S^{-1}BS \) are both diagonal matrices. If we multiply two diagonal matrices, we get another diagonal matrix. Thus, \((S^{-1}AS)(S^{-1}BS) = S^{-1}ABS \) is a diagonal matrix, so \(AB \) is diagonalizable.

4. If \(A \) is diagonalizable, then \(A^T \) is diagonalizable.

Solution. True. Since \(A \) is diagonalizable, there is an invertible matrix \(S \) such that \(S^{-1}AS \) is a diagonal matrix \(D \). Then, \((S^{-1}AS)^T \) is equal to \(D^T \), which is the same as \(D \). On the other hand, \((S^{-1}AS)^T \) is just \(S^T A^T (S^{-1})^T \). Thus, if \(R = (S^T)^{-1} \), then \(R^{-1}A^TR = D \), so \(A^T \) is diagonalizable.
5. If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

Solution. True. The geometric multiplicity of any eigenvalue is at least 1, so, if A has n distinct eigenvalues, then the sum of the geometric multiplicities of the eigenvalues is n. Therefore, A has a basis of eigenvectors, so A is diagonalizable.

6. If A is a diagonalizable matrix and λ is an eigenvalue of A, then the algebraic multiplicity of λ is equal to the geometric multiplicity of λ.

Solution. True. Let's say A is an $n \times n$ matrix, and let λ be an eigenvalue. Then, we know:

- The algebraic multiplicity of λ is greater than or equal to the geometric multiplicity of λ.
- The sum of the algebraic multiplicities of all eigenvalues is at most n (the degree of the characteristic polynomial of A).
- Since A is diagonalizable, the geometric multiplicities of the eigenvalues of A must add up to n.

Thus, the algebraic multiplicity of λ must be the same as the geometric multiplicity of λ (otherwise the sum of the algebraic multiplicities would be greater than n).

7. If A and B are both diagonalizable and if A and B have the same eigenvalues with the same geometric multiplicities, then A is similar to B.

Solution. True. Since A is diagonalizable, the geometric multiplicities of its eigenvalues add up to n. That is, A has n eigenvalues $\lambda_1, \ldots, \lambda_n$ (if we count the eigenvalues with their geometric multiplicities). Then, A is similar to the diagonal matrix

$$D = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}.$$

Since B has the same eigenvalues with the same geometric multiplicities and B is diagonalizable, B is also similar to D. Thus, A and B are both similar to D, so they must be similar to each other.