Homework for Chapter 4. Extrema and Double integrals

Section 4.1: Extrema

1) (extrema) Find all the extrema of the function
\[f(x, y) = 2x^3 + 4y^2 - 2y^4 - 6x \]
and determine whether they are maxima, minima or saddle points.

2) (extrema) Where on the parametrized surface
\[\mathbf{r}(u, v) = \langle u^2, v^3, uv \rangle \]
is the temperature \(T(x, y, z) = 12x + y - 12z \) minimal? To find the minimum, look where the function \(f(u, v) = T(\mathbf{r}(u, v)) \) has an extremum. Find all local maxima, local minima or saddle points of \(f \).

Remark. After you have found the function \(f(u, v) \), you could replace the variables \(u, v \) again with \(x, y \) if you like and look at a function \(f(x, y) \).

3) (extrema) Find and classify all the extrema of the function
\[f(x, y) = e^{-x^2 - y^2}(x^2 + 2y^2). \]

4) (global extrema) Find all extrema of the function
\[f(x, y) = x^3 + y^3 - 3x - 12y + 20 \]
on the plane and characterize them. Do you find a global maximum or global minimum among them?

5) (extrema) The thickness of the region enclosed by the two graphs \(f_1(x, y) = 10 - 2x^2 - 2y^2 \) and \(f_2(x, y) = -x^4 - y^4 - 2 \) is denoted by \(f(x, y) = f_1(x, y) - f_2(x, y) \). Classify all critical points of \(f \) and find the global minimal thickness.

Section 4.2: Lagrange

1) (Lagrange) Find the cylindrical basket which is open on the top has the largest volume for fixed area \(\pi \). If \(x \) is the radius and \(y \) is the height, we have to extremize \(f(x, y) = \pi x^2 y \) under the constraint \(g(x, y) = 2\pi xy + \pi x^2 = \pi \). Use the method of Lagrange multipliers.

2) (global extrema with Lagrange) Find the extrema of the same function
\[f(x, y) = e^{-x^2-y^2}(x^2 + 2y^2) \]
as in problem 4.1.3 but now on the entire disc \(\{x^2 + y^2 \leq 4\} \) of radius 2. Besides the already found extrema inside the disk, you have to find extrema on the boundary.

3) Find and classify all the critical points of the function
\[f(x, y) = 5 + 3x^2 + 3y^2 + y^3 + x^3. \]

Is there a global maximum or a global minimum for \(f(x, y) \)?

4) A solid bullet made of a half sphere and a cylinder has the volume \(V = \frac{2\pi r^3}{3} + \pi r^2 h \) and surface area \(A = 2\pi r^2 + 2\pi rh + \pi r^2 \). Doctor Manhatten designs a bullet with fixed volume and minimal area. With \(g = 3V/\pi = 1 \) and \(f = A/\pi \) he therefore minimizes
\[f(h, r) = 3r^2 + 2rh \]
under the constraint
\[g(h, r) = 2r^3 + 3r^2 h = 1. \]
Use the Lagrange method to find a local minimum of \(f \) under the constraint \(g = 1. \)

5) Minimize the material cost of an office tray
\[f(x, y) = xy + x + 2y \]
of length \(x \), width \(y \) and height 1 under the constraint that the volume \(g(x, y) = xy \) is constant and equal to 4.
Section 4.3: Double integrals

1) (double integral) Calculate the iterated integral \(\int_1^4 \int_0^2 (2x - \sqrt{y}) \, dx \, dy \).

2) (double integral) Find the area of the region \(R = \{(x, y) \mid 0 \leq x \leq 2\pi, \sin(x) - 1 \leq y \leq \cos(x) + 2\} \) and use it to compute the average value \(\int \int_R f(x, y) \, dxdy/\text{area}(R) \) of \(f(x, y) = y \) over that region.

3) (volume) Find the volume of the solid lying under the paraboloid \(z = x^2 + y^2 \) and above the rectangle \(R = [-2, 2] \times [-3, 3] = \{(x, y) \mid -2 \leq x \leq 2, -3 \leq y \leq 3\} \).

4) (switching order of integration) Calculate the iterated integral \(\int_0^1 \int_{x^2}^{x} (x^2 - y) \, dy \, dx \). Sketch the corresponding type I region. Write this integral as integral over a type II region and compute the integral again.

5) (double integral) Evaluate the double integral \(\int_0^2 \int_0^{x^2} \frac{x}{y^2} \, dy \, dx \).

Section 4.4: Polar integration

1) (polar integrals) Integrate \(f(x, y) = x^2 \) over the unit disc \(\{x^2 + y^2 \leq 1 \} \) in two ways, first using Cartesian coordinates, then using polar coordinates.

2) (polar integrals) Find \(\int \int_R (x^2 + y^2)^{10} \, dA \), where \(R \) is the part of the unit disc \(\{x^2 + y^2 \leq 1 \} \) for which \(y > x \).

3) (polar integrals) What is the area of the region which is bounded by the following three curves, first by the polar curve \(r(\theta) = \theta \) with \(\theta \in [0, 2\pi] \), second by the polar curve \(r(\theta) = 2\theta \) with \(\theta \in [0, 2\pi] \) and third by the positive x-axis.

4) (polar integrals) Find the average value of \(f(x, y) = x^2 + y^2 \) on the annular region \(R : 1 \leq |(x, y)| \leq 2 \). The average is \(\int \int_R f \, dxdy/\int \int_R 1 \, dxdy \).

5) (surface area) Find the surface area of the part of the paraboloid \(x = y^2 + z^2 \) which is inside the cylinder \(y^2 + z^2 \leq 9 \).