Extended hour to hour syllabus
Oliver Knill
Maths 21a, Summer 2005

1. Week: Geometry and Space

28. June: Space, coordinates, distance

Class starts with a short slide show highlighting some points of the syllabus. Then we dive right into the material. The idea to use coordinates to describe space was promoted by René Descartes in the 16th century at about the time, when Harvard College was founded. A fundamental notion is the distance between two points. We will use Pythagoras to measure a concrete distance in some Bostonian unit. In order to get a feel about space, we will look at some geometric objects defined through coordinates. We will focus on circles and spheres and learn how to find the midpoint and radius of a sphere given as a quadratic expression in x, y, z. This method is called completion of the square. If time permits, we discuss, what distinguishes Euclidian distance from other distances. An other more philosophical question is why our physical space is three dimensional. A further topic for discussion is the existence of other coordinate systems like the photographers coordinate system. Finally, we might mention GPS as an application of distance measurement. This will be a challenge problem.

29 June: Vectors, dot product, projections

Two points P, Q define an object which we call a vector \(\vec{PQ} \). The vector connects the initial point P with the end point Q. Vectors can be attached everywhere in space but are identified if they have the same length and direction. Vectors can describe for example velocities, forces or color. We learn first algebraic operations of vectors like addition, subtraction and scaling. This is done both graphically as well as algebraically. We introduce then the dot product between two vectors which results in a scalar. Using the dot product, we can compute length, angles and projections. By assuming the trigonometric cos-formula, we prove the important formula \(\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \alpha \), which relates length and angle with the dot product. This formula has some consequences like the Cauchy-Schwartz inequality or the Pythagoras theorem. We mention the notation \(\mathbf{i}, \mathbf{j}, \mathbf{k} \) for the unit vectors.

30. June: Cross product, lines

The cross product of two vectors in space results in a new vector perpendicular to both. The product can be used for many things. It is useful for example to compute areas, it can be used to compute the distance between a point and a line. It will also be important for constructions like to get a plane through three points or to find the line which is in the intersection of two planes. The cross product is introduced as a determinant. We will prove the important formula \(\|\vec{v} \times \vec{w}\| = \|\vec{v}\| \|\vec{w}\| \sin(\alpha) \) and interpret it geometrically as an area of the parallelepiped spanned by \(\vec{v} \) and \(\vec{w} \). In general, there are different ways to describe a geometric object. For lines, we will see the parametric description, as well as an implicit description which we will be identified later as the intersection of two planes.

2. Week: Functions and Surfaces

5. July: Planes, distance formulas

The simplest equations are linear equations. A linear equation \(ax + by + cz = c \) in space defines a plane. This equation can be written as \(a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \) where \((x_0, y_0, z_0) \) is a point on the plane and interpreted as the plane which is perpendicular to the vector \(\vec{n} = (a, b, c) \). We will then learn how to visualize a plane using traces and intercepts. A basic construction is to find the equation of a plane which passes through three points \(P, Q, R \). As an application, we look at some distance formulas like the distance from a point to a plane, the distance from a point to a line or the distance between two lines.

6. July: Functions, graphs, quadrics

As the name "multivariable calculus" suggests, functions of several variables play an essential role in this course. The graph of functions of two variables is defined as the set of points \((x, y, z) \) for which \(z = f(x, y) = 0 \). After reviewing some conic sections, we will also look at surfaces of the form \(g(x, y, z) = 0 \), where \(g \) is a function which only involves quadratic terms. These are called quadrics. Important quadrics are spheres, ellipsoids, cones, cylinders as well as various hyperboloids.

7. July: Implicit and parametric surfaces

Surfaces can be described in two fundamental ways: implicitly or parametrically. The first form is \(g(x, y, z) = 0 \) like \(x^2 + y^2 + z^2 - 1 = 0 \) the second form is \(r(u, v) = (x(u, v), y(u, v), z(u, v)) \) like \(r(u, v) = (r \cos(u) \sin(v), r \sin(u) \sin(v), r \cos(v)) \). In many cases, it is possible to go from one form to the other like for the sphere, the plane, graphs of functions of two variables or surfaces of revolution. Using a computer, one can visualize surfaces very well. Computer algebra systems with graphical capabilities are for the mathematician what the telescope is for the astronomer or the microscope for the biologist. With a bit of patience you find your own surface which nobody has seen before.

3. Week: Curves and Partial Derivatives

12. July: Curves, velocity, acceleration, chain rule

Curves are one dimensional objects. Both in the plane as well as in space, they can take many different forms. A special case are closed curves in space which are called knots. By differentiation, one obtains velocity and acceleration which are both vectors. The chain rule tells us how a function changes along a curve.

There is a formula for the length of a curve. Lengths can be computed by evaluating a one-dimensional integral. The curvature of a curve is a quantity telling how much a curve is bent. Finally, we will see partial derivatives as well as see some partial differential equations abbreviated as PDE’s.

14. July: First midterm (on week 1-2)

4. Week: Extrema and Lagrange Multipliers

19. July: Gradient, linearization, tangents

The gradient of a function is an important tool to describe the geometry of surfaces. Fundamental is the property that the gradient vector ∇g is perpendicular to the implicit surface $g = c$. This allows us to compute tangent planes and tangent lines as well as to approximate a linear function by a linear function near a point. Many physical laws are actually just linearization of more complicated nonlinear laws.

20. July: Extrema, second derivative test

A central application of multi-variable calculus is to extremize functions of two variables. One first identifies critical points, points where the gradient vanishes. The nature of these critical points can be established using the second derivative test. There will be three fundamentally different cases: local maxima, local minima as well as saddle points.

21. July: Extrema with constraints

The topic with maybe the most applications both in science or economics is to extremize a function $f(x, y)$ in the presence of a constraint $g(x, y) = 0$. A necessary condition for a critical point is that the gradients of f and g are parallel. This leads to equations called the Lagrange equation.

5. Week: Double Integrals and Surface Integrals

26. July: Double integrals, type I,II regions

Integration in two dimensions is first done on rectangles, then on regions bound by graphs of functions. Similar than in one dimension, there is a Riemann sum approximation of the integral. This allows us to prove results like Fubinis theorem on the change of the integration order. An application of double integration is the computation of area.

27. July: Polar coordinates, surface area

28. July: Second midterm (on week 3-4)

Triple Integrals and Line Integrals

2. August: Triple integrals, cylindrical coordinates

Triple integrals allow the computation of volumes, moment of inertia or centers of masses of solids. First introduced for cubes it is then extended to more general regions bound by graphs of functions of two variables. Some regions can be described better in cylindrical coordinates, the analogue of polar coordinates in space.

3. August: Spherical coordinates, vector fields

Spherical coordinates allow an even more elegant computation of triple integrals for certain regions like cones or spheres. Next, we will introduce vector fields. They occur as force fields or velocity fields or mechanics and are closely related to the field of ordinary differential equations. Vector fields will occupy us until the end of the course.

4. August: Line integrals, fundamental thm of lineintegrals

Line integrals are one dimensional integrals along a curve in the presence of a vector field. If the vector field is a force field, then the line integral has the interpretation work done, when walking along the path. For a class of vector fields which we call conservative vector fields one can compute the line integral easily using an identity called the fundamental theorem of line integrals.

Exterior Derivatives and Integral Theorems

9. August: Curl and Green theorem

Greens theorem relates a line integral along a closed curve with a double integral of a derivative of the vector field in the region enclosed by the curve. The theorem is useful for example to compute areas. It also allows an easy computation of line integrals in certain cases. We will see a derivative of the vector field which is called the "curl". It is a scalar field which measures the vorticity of the vector field in the plane.

10. August: Curl and Stokes theorem
Stokes theorem is Greens theorem lifted into three dimensions, where the region is replaced by a surface. Again, one can replace the line integral along the boundary of the surface by an integral of the “curl” of the field over the surface. This integral is a flux integral. The curl of a vector field in three dimensions is a vector field itself. The three components give the vorticity of the vector field in the x, y, and z direction.

11. August: Div and Gauss theorem

Finally, the divergence of a vector field inside a solid is related to the flux of the vector field through the boundary of the surface using the divergence theorem which is sometimes also called Gauss theorem. The divergence theorem relates the "local expansion rate" of a vector field with the flux through a closed surface and is useful for example to compute the gravitational field inside a solid.

16. August: Final exam (on week 1-7) 1:30 PM