REMINDER: INTEGRATION POLAR COORDINATES.

\[\int \int_R f(r, \theta) \, r \, dr \, d\theta . \]

EXAMPLE 1. Area of a disk of radius \(R \)

\[\int_0^R \int_0^{2\pi} r \, d\theta \, dr = 2\pi R^2 \left(\frac{R^2}{2} \right) = R^2 \pi . \]

WHERE DOES THE FACTOR "\(r \)" COME FROM?

1. EXPLANATION. A small rectangle with dimensions \(dr \, d\theta \) in the \((r, \theta) \) plane is mapped to a sector segment in the \((x, y) \) plane. It has approximately the area \(r \, dr \, d\theta \). It is small for small \(r \).

2. EXPLANATION. The map \((r, \theta) \mapsto (r \cos(\theta), r \sin(\theta)) \) which changes from Cartesian coordinates to polar coordinates. The Jacobian is defined as the matrix

\[
\begin{pmatrix}
\cos(\theta) & \sin(\theta) \\
r \sin(\theta) & r \cos(\theta)
\end{pmatrix}
\]

It contains the gradient vectors of \(f(r, \theta) \) and \(g(r, \theta) \) as rows. The determinant \(f_r g_\theta - f_\theta g_r = r \) is the crossproduct of these two gradient vectors and gives the area of the parallelepiped.

CYLINDRICAL COORDINATES. Use polar coordinates in the \(x-y \) plane and leave the \(z \) coordinate. Take \(T(r, \theta, z) = (r \cos(\theta), r \sin(\theta), z) \).

The integration factor \(r \) is the same as in polar coordinates.

\[
\int \int \int_{T(R)} f(x, y, z) \, dx \, dy \, dz = \int \int \int_R f(r, \theta, z) \, r \, dr \, d\theta \, dz
\]

COORDINATES OF CAMBRIDGE. On the website \(\text{http://cello.cs.uiuc.edu/cgi-bin/slamm/ip2ll/} \) you can enter a host like \(\text{www.math.harvard.edu} \) and get latitude and longitude of the host: \((\text{lat, lon}) = (42.365, -71.1) \). Using \((r, \theta, \phi) \) coordinates, we obtain the position \((r, 90 - 42.365, -71.1) \) of the host in spherical coordinates. The site does not give the height, but we are about on see-level, so that \(r = 6365 \text{km} \).

EXAMPLE. Calculate the volume bounded by the parabolic \(z = 1 - (x^2 + y^2) \) and the \(x-y \) plane. In cylindrical coordinates, the paraboloid is \(z(r, \phi) = 1 - r^2 \):

\[
\int_0^1 \int_0^{2\pi} \int_0^{1-r^2} r^2 \, dz \, d\phi \, dr = \int_0^1 \int_0^{2\pi} (r - r^3) \, d\phi \, dr = 2\pi \left(\frac{r^2}{2} - \frac{r^4}{4} \right) \bigg|_0^1 = \pi .
\]
SPHERICAL COORDINATES. Spherical coordinates use the radius ρ as well as two angles: θ the polar angle and ϕ, the angle between the vector and the z axis. The coordinate change is

$$T : (x, y, z) = (\rho \cos(\theta) \sin(\phi), \rho \sin(\theta) \sin(\phi), \rho \cos(\phi)) .$$

The integration factor can be seen from the dimensions of a spherical wedge with dimensions $d\rho, \rho \sin(\phi) \, d\theta, \rho d\phi = \rho^2 \sin(\phi) \, d\theta d\phi d\rho$.

$$\int \int \int_{V(R)} f(x, y, z) \, dx \, dy \, dz = \int \int \int_{V} f(\rho, \theta, z) \, \rho^2 \sin(\phi) \, d\rho d\theta d\phi$$

VOLUME OF SPHERE. A sphere of radius R has the volume

$$\int_{0}^{R} \int_{0}^{2\pi} \int_{0}^{\pi} \rho^2 \sin(\phi) \, d\phi d\theta d\rho .$$

The most inner integral $\int_{0}^{\pi} \rho^2 \sin(\phi) d\phi = -\rho^2 \cos(\phi)|_{0}^{\pi} = 2\rho^2$. The next layer is, because ϕ does not appear: $\int_{0}^{2\pi} 2\rho^2 \, d\phi = 4\pi\rho^2$. The final integral is $\int_{0}^{R} 4\pi\rho^2 \, d\rho = 4\pi R^3/3$.

MOMENT OF INERTIA. The moment of inertia of a body G with respect to an axis L is the triple integral $\int \int \int_{V} r(x, y, z)^2 \, dx \, dy \, dz$, where $r(x, y, z) = R \sin(\phi)$ is the distance from L. Problem: calculate the moment of inertia of a sphere of radius R with respect to the z-axis:

$$I = \int_{0}^{R} \int_{0}^{2\pi} \int_{0}^{\pi} \rho^2 \sin^2(\phi) \rho^2 \sin(\phi) \, d\phi d\theta d\rho = \left(\frac{1}{3} \sin^3(\phi) \right)(\int_{0}^{R} \rho^4 \, dr)(\int_{0}^{2\pi} d\theta) = \frac{4}{3} \cdot \frac{R^5}{5} \cdot 2\pi = \frac{8\pi R^5}{15} = \frac{VR^2}{5} .$$

If a sphere spins around the z-axis with angular velocity ω, then $I\omega^2/2$ is the kinetic energy of that sphere. Example: the moment of inertia of the earth is $810^{37} km^2$. The angular velocity is $\omega = 1/day = 1/(86400s)$ so that the energy of the earth rotation is $810^{37} km^2/(74649600000 s^2) \sim 10^{28} J = 10^{25} kJ \sim 2.510^{24} kcal$.

DIAMOND. Find the volume and the center of mass of a diamond, the intersection of the unit sphere with the cone given in cylindrical coordinates as $z = \sqrt{3}r$.

Solution: we use spherical coordinates to find the center of mass $(\bar{x}, \bar{y}, \bar{z})$:

$$V = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi/6} \rho^2 \sin(\phi) \, d\phi d\theta d\rho = \left(\frac{1}{3} - \frac{\sqrt{3}}{3}\right) 2\pi$$

$$\\bar{x} = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi/6} \rho^3 \sin^2(\phi) \cos(\theta) \, d\phi d\theta d\rho / V = 0$$

$$\\bar{y} = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi/6} \rho^3 \sin^2(\phi) \sin(\theta) \, d\phi d\theta d\rho / V = 0$$

$$\\bar{z} = \int_{0}^{1} \int_{0}^{2\pi} \int_{0}^{\pi/6} \rho^3 \cos(\phi) \sin(\phi) \, d\phi d\theta d\rho / V = \frac{2\pi}{32V}$$