1D INTEGRATION IN 100 WORDS. If \(f(x) \) is a continuous function, then \(\int_a^b f(x) \, dx \) can be defined as a limit of the Riemann sum \(f_n(x) = \frac{1}{n} \sum_{x_k \in [a,b]} f(x_k) \) for \(n \to \infty \) with \(x_k = k/n \). The integral divided by \((b-a)\) is the average of \(f \) on \([a,b]\). The integral can be interpreted as a signed area under the graph of \(f \). If \(f(x) = 1 \), the integral is the length of the interval. The function \(F(x) = \int_a^x f(y) \, dy \) is called an anti-derivative of \(f \). The fundamental theorem of calculus states \(F'(x) = f(x) \). Unlike the derivative, anti-derivatives can not always be expressed in terms of known functions. An example is: \(F(x) = \int_0^x e^{-x^2} \, dx \). Often, the anti-derivative can be found: Example: \(f(x) = \cos^2(x) = \frac{1}{2} (\cos(2x) + 1) \), \(F(x) = \frac{x}{2} \sin(2x) = \frac{1}{4} \).

2D INTEGRATION. If \(f(x,y) \) is a continuous function of two variables on a region \(R \), the integral \(\int_R f(x,y) \, dxdy \) can be defined as the limit \(\frac{1}{n^2} \sum_{i,j \in R} f(x_i,y_j) \) with \(x_{i,j} = (i/n, j/n) \) when \(n \) goes to infinity. If \(f(x,y) = 1 \), then the integral is the area of the region \(R \). The integral divided by the area of \(R \) is the average value of \(f \) on \(R \). For many regions, the integral can be calculated as a double integral \(\int_a^b \int_{c(x)}^{d(x)} f(x,y) \, dy \, dx \). In general, the region must be split into pieces, then integrated separately.

EXAMPLE. Calculate \(\int_R f(x,y) \, dxdy \), where \(f(x,y) = 4x^2y^3 \) and where \(R \) is the rectangle \([0,1] \times [0,2]\).
\[
\int_0^1 \left[\int_0^2 4x^2y^3 \, dy \right] \, dx = \int_0^1 [x^2y^4]_0^2 \, dx = \int_0^1 x^2(16 - 0) \, dx = 16x^3/3\big|_0^1 = \frac{16}{3}.
\]

FUBINI’S THEOREM. \(\int_a^b \int_c^d f(x,y) \, dxdy = \int_c^d \int_a^b f(y,x) \, dydx \).
To calculate this integral, we first determine the inner integral
\[\int_0^1 e^{-x^2} \, dx = \int_0^1 xe^{-x^2} \, dx = -\frac{e^{-x^2}}{2} \bigg|_0^1 = \frac{1}{2} - \frac{1}{2e} \approx 0.316. \]
A special case of switching the order of integration is Fubini’s theorem.

EXAMPLE. Let \(R \) be the triangle \(1 \geq x \geq 0, 1 \geq y \geq 0, y \leq x \). Calculate \(\int_R e^{-x^2} \, dxdy \).

ATTEMPT. \(\int_0^1 \int_y^1 e^{-x^2} \, dx \, dy \). We can not solve the inner integral because \(e^{-x^2} \)
has no anti-derivative in terms of elementary functions.

IDEA. Switch order: \(\int_0^1 \int_0^x e^{-x^2} \, dy \, dx = \int_0^1 xe^{-x^2} \, dx = -\frac{e^{-x^2}}{2} \bigg|_0^1 = \frac{1}{2} - \frac{1}{2e} \approx 0.316. \)

QUANTUM MECHANICS. In quantum mechanics, the motion of a particle (like an electron) in the plane is determined by a function \(u(x, y) \), the wave function. Unlike in classical mechanics, the position of a particle is given in a probabilistic way only. If \(R \) is a region and \(u \) is normalized so that \(\int |u|^2 \, dxdy = 1 \), then \(\int_R \left| u(x, y) \right|^2 \, dxdy \) is the probability, that the particle is in \(R \).

EXAMPLE. Unlike a classical particle, a quantum particle in a box \([0, \pi] \times [0, \pi]\) can have a discrete set of energies only. This is the reason for the name "quantum". If \(-u_{xx} + u_{yy} = \lambda u\), then a particle of mass \(m \) has the energy \(E = \lambda \hbar^2 / 2m \). A function \(u(x, y) = \sin(kx) \sin(ny) \) represents a particle of energy \((k^2 + n^2)\hbar^2 / (2m) \).

Let us assume \(k = 2 \) and \(n = 3 \) from now on. Our aim is to find the probability that the particle with energy \(13\hbar^2 / (2m) \) is in the middle 9th region \(R = [\pi/3, 2\pi/3] \times [\pi/3, 2\pi/3] \) of the box.

SOLUTION: We first have to normalize \(u^2(x, y) = \sin^2(2x) \sin^2(3y) \), so that the average over the whole square is 1:

\[A = \int_0^\pi \int_0^\pi \sin^2(2x) \sin^2(3y) \, dxdy. \]

To calculate this integral, we first determine the inner integral
\[\int_0^\pi \sin^2(2x) \sin^2(3y) \, dx = \sin^2(3y) \int_0^\pi \sin^2(2x) \, dx = \frac{\pi}{2} \sin^2(3y) \] (the factor
\(\sin^2(3y) \) is treated as a constant). Now, \(A = \int_0^\pi \left(\frac{\pi}{2} \sin^2(3y) \right) \, dy = \frac{\pi^2}{4} \) so that the probability amplitude function is \(f(x, y) = \frac{1}{\pi} \sin^2(2x) \sin^2(3y) \).

The probability that the particle is in \(R \) is slightly smaller than 1/9:

\[\frac{1}{A} \int_R f(x, y) \, dxdy = \frac{4}{\pi^2} \int_{\pi/3}^{2\pi/3} \int_{\pi/3}^{2\pi/3} \sin^2(2x) \sin^2(3y) \, dxdy \]
\[= \frac{4}{\pi^2} (4x - \sin(4x)) / 8(6x - \sin(6x)) / 12 \int_{\pi/3}^{2\pi/3} \]
\[= 1/9 - 1/(4\sqrt{3}\pi). \]

MOMENT OF INERTIA. Compute the kinetic energy of a square iron plate \(R = [-1, 1] \times [-1, 1] \) of density \(\rho = 1 \) (about 10cm thick) rotating around its center with a 6000 rpm (rounds per minute). The angular velocity speed is \(\omega = 2\pi \times 6000/60 = 100 \times 2\pi \). Because \(E = \int I(\omega)^2 / 2 \, dxdy \), where \(I = \int (x^2 + y^2) \, dxdy \) is the moment of inertia. For the square, \(I = 4/3 \). Its energy of the plate is \(\omega^2/6 = 4\pi^2100/6 \text{ Joule} \approx 0.43 KWh \). You can run with this energy a 60 Watt bulb for 7 hours.

WHERE DO DOUBLE INTEGRALS OCCUR?
- compute areas.
- compute averages. Examples: average rain fall or average population in some area.
- probabilities. Expectation of random variables.
- quantum mechanics: probability of particle.
- find moment of inertia \(\int \int_R (x^2 + y^2) \rho(x, y) \, dxdy \)
- find center of mass (\(\int \int_R x\rho(x, y) \, dxdy/M, \int \int_R y\rho(x, y) \, dxdy/M \)), with \(M = \int \int_R \, dxdy. \)
- 1D integrals (see challenge problems).