13.3: 8, 16, 20, 26, 29–32

8. \(\partial(1 + 2xy + \ln x)/\partial y = 2x = \partial(x^2)/\partial x \) and the domain of \(\mathbf{F} \) is \(\{(x, y) \mid x > 0\} \) which is open and simply-connected.

Hence \(\mathbf{F} \) is conservative, so there exists a function \(f \) such that \(\nabla f = \mathbf{F} \). Then \(f_x(x, y) = 1 + 2xy + \ln x \) implies \(f(x, y) = x^2 + xy^2 + x \ln x - x + g(y) \) and \(f_y(x, y) = x^2 + g'(y) \). But \(f_y(x, y) = x^2 \) so \(g'(y) = 0 \) \(\Rightarrow \) \(g(y) = K \).

Then \(f(x, y) = x^2 y + x \ln x + K \) and it is a potential function for \(\mathbf{F} \).

16. (a) \(f_x(x, y, z) = 2xz + y^2 \) implies \(f(x, y, z) = x^2 z + xy^2 + g(y, z) \) and so \(f_y(x, y, z) = 2xy + g_y(y, z) \). But \(f_y(x, y, z) = 2xy \) so \(g_y(y, z) = 0 \) \(\Rightarrow \) \(g(y, z) = h(z) \). Thus \(f(x, y, z) = x^2 z + xy^2 + h(z) \) and \(f_z(x, y, z) = x^2 + h'(z) \). But \(f_z(x, y, z) = x^2 + 3z^2 \), so \(h'(z) = 3z^2 \) \(\Rightarrow \) \(h(z) = z^3 + K \). Hence \(f(x, y, z) = x^2 z + xy^2 + z^3 \) (taking \(K = 0 \)).

(b) \(t = 0 \) corresponds to the point \((0, 1, -1)\) and \(t = 1 \) corresponds to \((1, 2, 1)\), so

\[\int_C \mathbf{F} \cdot d\mathbf{r} = f(1, 2, 1) - f(0, 1, -1) = 6 - (-1) = 7. \]

20. Here \(\mathbf{F}(x, y) = (1 - ye^{-x}) \mathbf{i} + e^{-x} \mathbf{j} \). Then \(f(x, y) = x + ye^{-x} \) is a potential function for \(\mathbf{F} \), that is, \(\nabla f = \mathbf{F} \) so \(\mathbf{F} \) is conservative and thus its line integral is independent of path. Hence

\[\int_C (1 - ye^{-x}) \, dx + e^{-x} \, dy = \int_C \mathbf{F} \cdot d\mathbf{r} = f(1, 2) - f(0, 1) = (1 + 2e^{-1}) - 1 = 2/e. \]

26. \(\nabla f(x, y) = \cos(x - 2y) \mathbf{i} - 2 \cos(x - 2y) \mathbf{j} \)

(a) We use Theorem 2: \(\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \nabla f \cdot d\mathbf{r} = f(r(b)) - f(r(a)) \) where \(C_1 \) starts at \(t = a \) and ends at \(t = b \). So because \(f(0, 0) = \sin 0 = 0 \) and \(f(\pi, \pi) = \sin(\pi - 2\pi) = 0 \), one possible curve \(C_1 \) is the straight line from \((0, 0)\) to \((\pi, \pi)\); that is, \(r(t) = t\pi \mathbf{i} + t\pi \mathbf{j}, 0 \leq t \leq 1 \).

(b) From (a), \(\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = f(r(b)) - f(r(a)) \). So because \(f(0, 0) = \sin 0 = 0 \) and \(f\left(\frac{\pi}{2}, 0\right) = 1 \), one possible curve \(C_2 \) is \(r(t) = \frac{\pi}{2}t \mathbf{i}, 0 \leq t \leq 1 \), the straight line from \((0, 0)\) to \((\frac{\pi}{2}, 0)\).

29. \(D = \{(x, y) \mid x > 0, y > 0\} \) is the first quadrant (excluding the axes).

(a) \(D \) is open because around every point in \(D \) we can put a disk that lies in \(D \).

(b) \(D \) is connected because in the straight line segment joining any two points in \(D \) lies in \(D \).

(c) \(D \) is simply-connected because it’s connected and has no holes.

30. \(D = \{(x, y) \mid x \neq 0\} \) consists of all points in the \(xy \)-plane except for those on the \(y \)-axis.

(a) \(D \) is open.

(b) Points on opposite sides of the \(y \)-axis cannot be joined by a path that lies in \(D \), so \(D \) is not connected.

(c) \(D \) is not simply-connected because it is not connected.

31. \(D = \{(x, y) \mid 1 < x^2 + y^2 < 4\} \) is the annular region between the circles with center \((0, 0)\) and radii 1 and 2.

(a) \(D \) is open.

(b) \(D \) is connected.

(c) \(D \) is not simply-connected. For example, \(x^2 + y^2 = (1.5)^2 \) is simple and closed and lies within \(D \) but encloses points that are not in \(D \). (Or we can say, \(D \) has a hole, so is not simply-connected.)

32. \(D = \{(x, y) \mid x^2 + y^2 \leq 1 \text{ or } 4 \leq x^2 + y^2 \leq 9\} \) is the points on or inside the circle \(x^2 + y^2 = 1 \), together with the points on or between the circles \(x^2 + y^2 = 4 \) and \(x^2 + y^2 = 9 \).

(a) \(D \) is not open because, for instance, no disk with center \((0, 2)\) lies entirely within \(D \).

(b) \(D \) is not connected because, for example, \((0, 0)\) and \((0, 2.5)\) lie in \(D \) but cannot be joined by a path that lies entirely in \(D \).

(c) \(D \) is not simply-connected because, for example, \(x^2 + y^2 = 9 \) is a simple closed curve in \(D \) but encloses points that are not in \(D \).