1 Column and Null Spaces

1. Note that set (a) in Question 3 are sets we have seen before. The set of all linear combinations of the columns of a matrix \(A \) is the range of the linear transformation \(\mathbf{x} \mapsto A\mathbf{x} \). We call such a set a set the column space of \(A \).

2. **Definition:** The column space of a matrix \(A \) is the set of all linear combinations of the columns of \(A \). We denote this set by \(\text{Col} A \).

3. Our reasoning that set (a) is a subspace of \(\mathbb{R}^3 \) extends to any column space.

4. **Theorem:** The column space of a \(m \times n \) matrix is a subspace of \(\mathbb{R}^m \).

5. Our reasoning that set (a) is a subspace of \(\mathbb{R}^3 \) also extends to any set of the form \(\text{Span}\{v_1, v_2, \ldots, v_p\} \).

6. **Theorem:** For \(v_1, v_2, \ldots, v_p \) in \(\mathbb{R}^n \), the set \(\text{Span}\{v_1, v_2, \ldots, v_p\} \) is a subspace of \(\mathbb{R}^n \). We call this set the subspace spanned (or generated) by \(v_1, v_2, \ldots, v_p \).

7. Note we have also seen sets like set (b) in Question 3, the set of all solutions to a homogeneous matrix equation. We can view this set as the set of all vectors in the domain of the linear transformation \(\mathbf{x} \mapsto A\mathbf{x} \) that are mapped to the zero vector. We call such a set the null space of \(A \).

8. **Definition:** The null space of a matrix \(A \) is the set of all solutions to the homogeneous equation \(A\mathbf{x} = \mathbf{0} \). We denote this set by \(\text{Nul} A \).

9. Our reasoning that set (b) is a subspace of \(\mathbb{R}^3 \) extends to any null space.

10. **Theorem 12:** The null space of a \(m \times n \) matrix is a subspace of \(\mathbb{R}^n \).

2 Bases

1. **Definition:** A basis for a subspace \(H \) of \(\mathbb{R}^n \) is a linearly independent set in \(H \) that spans \(H \).

2. See Question 4 and Solution 4 at this point.

3. **Problem:** Find a basis for the null space of the matrix \(A = \begin{bmatrix} 1 & 8 & -2 \\ 2 & -8 & 4 \\ 4 & 8 & 0 \end{bmatrix} \).

4. In general, writing the solution set of \(A\mathbf{x} = \mathbf{0} \) in parametric vector form identifies a basis for \(\text{Nul} A \). See Example 5 on page 171 for a good example.

5. **Problem:** Find a basis for the column space of the matrix \(A = \begin{bmatrix} 1 & 8 & -2 \\ 2 & -8 & 4 \\ 4 & 8 & 0 \end{bmatrix} \).

6. Note that when \(A \) is row reduced to echelon form \(B \), the columns are drastically changed, but the equations \(A\mathbf{x} = \mathbf{0} \) and \(B\mathbf{x} = \mathbf{0} \) have the same set of solutions. That is, the columns of \(A \) have exactly the same linear dependence relationships as the columns of \(B \). This gives us the following theorem.

7. **Theorem 13:** The pivot columns of a matrix \(A \) form a basis for the column space of \(A \).