Homework 8
Math 124, Fall 2005
Due Wednesday, November 16th

No late assignments will be accepted.

1. Show that \((3, 8)\) is a torsion point of order 7 on \(y^2 = x^3 - 43x + 166\).

2. Consider the ring \(\mathbb{Q}[x]\) of polynomial with rational coefficients.
 (a) Define an Euclidean division algorithm on \(\mathbb{Q}[x]\) using the degree of a polynomial as the Euclidean norm.
 (b) Show that if a ring \(R\) has an Euclidean algorithm and if \(I\) is an ideal\(^1\) of \(R\) then \(I\) is generated by a single element. [Hint: Consider the element of minimal norm in \(I\).]
 (c) Prove that for any complex number \(\alpha\)
 \[
 I_\alpha = \{ f \in \mathbb{Q}[x] \mid f(\alpha) = 0 \}
 \]
 is an ideal.
 (d) For any algebraic number\(^2\) over \(\mathbb{Q}\), show that there exists a single monic polynomial \(f_\alpha = x^n + \ldots\) such that
 \[
 f_\alpha(\alpha) = 0 \quad g(\alpha) = 0 \implies f_\alpha | g.
 \]
 The polynomial \(f_\alpha\) is called the **minimal polynomial** of \(\alpha\). The other zeros of \(f_\alpha\) are the **algebraic conjugate** of \(\alpha\). They have the same minimal polynomial.
 (e) Show that if \(\alpha\) and \(\alpha'\) are algebraic conjugates then

 \[
 g(\alpha) = 0 \iff g(\alpha') = 0
 \]
 (f) Show that for any \(\alpha \in \mathbb{C}\), \(\alpha\) and \(\bar{\alpha}\) are algebraic conjugates.
 (g) Show that \(\alpha\) is rational if and only if \(\alpha\) has no algebraic conjugates other than itself. [Hint : You might want to show that if \((x - \alpha)^n\) is a rational polynomial then \(\alpha\) itself is rational.]
 (h) Find all algebraic conjugates of \(\sqrt[3]{2}\).
 (i) Show that a rational polynomial of degree 3 has either zero, one or three rational solutions. Show that each of these three possibilities can happen.

Remark 1. We have used this last fact to show that if \(P\) and \(Q\) are two rational points on an elliptic curve then so is \(P + Q\).

\(^1\) An ideal is a subset that is closed under addition and under multiplication by elements of \(R\).
\(^2\) \(\alpha\) is algebraic over \(\mathbb{Q}\) if there is a polynomial \(f(x)\) in \(\mathbb{Q}[x]\) which has \(\alpha\) as a zero.