Lagrange Multipliers and Variational Problems with Constraints

Integral Constraints. Consider the variational problem of finding the extremals for the functional

\[J[y] = \int_a^b F(x, y, y') \, dx \]

with \(y(a) = A \) and \(y(b) = B \) subject to the additional integral constraint that

\[K[y] = \int_a^b G(x, y, y') \, dx = \ell, \]

where \(\ell \) is a given constant. Suppose we have an extremal \(y = y(x) \) for this variational problem. To derive a necessary condition for the extremal, we embed it in a 2-parameter family \(y = y(x, s, t) \) so that the given extremal \(y = y(x) \) corresponds to \((s, t) = (0, 0) \). The reason why we need a 2-parameter family instead of a 1-parameter family is that the family \(y = y(s, t) \) has to satisfy the integral constraint

\[K[y] = \int_a^b G(x, y(x, s, t), \frac{\partial}{\partial x} y(x, s, t)) \, dx = \ell \]

for all \((s, t)\). Consider now \(J[y] \) as a function of two variables \((s, t)\) subject to the condition \(K[y] = \ell \). Since \(J[y] \) has a critical point at \((s, t) = (0, 0)\) subject to the condition that the point \((s, t)\) lies on the curve \(K[y] = \ell \) in the space of the two real variables \((s, t)\), it follows that the gradient of \(J[y] \) with respect to \((s, t)\) is proportional to the gradient of \(K[y] \) with respect to \((s, t)\) at the point \((s, t) = (0, 0)\). Thus there exists some real number \(\lambda \) such that

\[\frac{\partial}{\partial s} J[y] = \lambda \frac{\partial}{\partial s} K[y], \]
\[\frac{\partial}{\partial t} J[y] = \lambda \frac{\partial}{\partial t} K[y] \]

at the point \((s, t) = (0, 0)\). In other words, we have

\[\int_a^b \left(F_y - \frac{d}{dx} F_{y'} \right) \left(\frac{\partial}{\partial s} y \right) \, dx = \lambda \int_a^b \left(G_y - \frac{d}{dx} G_{y'} \right) \left(\frac{\partial}{\partial s} y \right) \, dx, \]
\[\int_a^b \left(F_y - \frac{d}{dx} F_{y'} \right) \left(\frac{\partial}{\partial t} y \right) \, dx = \lambda \int_a^b \left(G_y - \frac{d}{dx} G_{y'} \right) \left(\frac{\partial}{\partial t} y \right) \, dx, \]
The left-hand side
\[\int_a^b \left(F_y - \frac{d}{dx} F_{y'} \right) \left(\frac{\partial}{\partial s} y \right) dx \]
of the first equation is the derivative of \(J \) with respect to the vector \(\frac{\partial}{\partial s} y \) in the space of functions. The left-hand side
\[\int_a^b \left(F_y - \frac{d}{dx} F_{y'} \right) \left(\frac{\partial}{\partial t} y \right) dx \]
of the second equation is the derivative of \(J \) with respect to the vector \(\frac{\partial}{\partial t} y \) in the space of functions. The right-hand side
\[\int_a^b \left(G_y - \frac{d}{dx} G_{y'} \right) \left(\frac{\partial}{\partial s} y \right) dx \]
of the first equation is the derivative of \(K \) with respect to the vector \(\frac{\partial}{\partial s} y \) in the space of functions. The right-hand side
\[\int_a^b \left(G_y - \frac{d}{dx} G_{y'} \right) \left(\frac{\partial}{\partial t} y \right) dx \]
of the second equation is the derivative of \(K \) with respect to the vector \(\frac{\partial}{\partial t} y \) in the space of functions.

The constant \(\lambda \) is already determined by the first equation which says that the component of the gradient of \(J \) in the direction of the vector \(\frac{\partial}{\partial s} y \) in the space of functions is equal to \(\lambda \) times the component of the gradient of \(K \) in the direction of the vector \(\frac{\partial}{\partial s} y \) in the space of functions. The second equation says that as a result the component of the gradient of \(J \) in the direction of any other vector \(\frac{\partial}{\partial t} y \) in the space of functions is equal to the same constant \(\lambda \) times the component of the gradient of \(K \) in the direction of the vector \(\frac{\partial}{\partial t} y \) in the space of functions.

As a consequence we can say that the full gradient of \(J \) in the space of functions is equal to \(\lambda \) times the full gradient of \(K \) in the space of functions. In other words,
\[\int_a^b \left(\left(F_y - \frac{d}{dx} F_{y'} \right) - \lambda \left(G_y - \frac{d}{dx} G_{y'} \right) \right) (\delta y) dx = 0 \]
for all δy with $(\delta y)(a) = (\delta y)(b) = 0$. Therefore we get the Euler-Lagrange equation
\[
(*) \quad F_y - \frac{d}{dx} F_{y'} = \lambda \left(G_y - \frac{d}{dx} G_{y'} \right)
\]
for some constant λ which is known as the Lagrange multiplier. Another way to write it is
\[
(F - \lambda G)_y - \frac{d}{dx} (F - \lambda G)_{y'} = 0.
\]
Besides the two initial conditions $y(a) = A$ and $y(b) = B$ to determine the two constant of integrations for the solution of the second-order differential equation $(*)$, we have an extra unknown λ which will be determined by the integral constraint $\int_a^b G(x, y, y') \, dx = \ell$.

Example. Given $a > 0$ and $\ell > 0$. Find an extremal for the variational problem

\[
J[y] = \int_{-a}^a y \, dx
\]

subject to $y(-a) = y(a) = 0$ and

\[
K[y] = \int_{-a}^a \sqrt{1 + y'^2} \, dx = \ell.
\]

Solution. The Euler-Lagrange equation is
\[
\frac{\partial}{\partial y} \left(y - \lambda \sqrt{1 + y^2} \right) - \frac{d}{dx} \left(\frac{\partial}{\partial y'} \left(y - \lambda \sqrt{1 + y^2} \right) \right) = 0
\]
for some Lagrange multiplier λ. We can rewrite it as
\[
1 + \lambda \frac{d}{dx} \frac{y'}{\sqrt{1 + y^2}} = 0.
\]
Integrating it once, we get
\[
x + \lambda \frac{y'}{\sqrt{1 + y^2}} = C_1.
\]
Squaring to remove the square root, we get
\[
(x - C_1)^2 = \lambda^2 \frac{y'^2}{1 + y'^2} = \lambda \left(1 - \frac{1}{1 + y'^2} \right).
\]
As a result,

\[
\frac{(x - C_1)^2}{\lambda^2} = 1 - \frac{1}{1 + y'^2},
\]

\[
\frac{1}{1 + y'^2} = 1 - \frac{(x - C_1)^2}{\lambda^2},
\]

\[
1 + y'^2 = \frac{1}{1 - \frac{(x - C_1)^2}{\lambda^2}},
\]

\[
y'^2 = \frac{1}{1 - \frac{(x - C_1)^2}{\lambda^2}} - 1 = \frac{(x - C_1)^2}{\lambda^2} - \frac{(x - C_1)^2}{\lambda^2},
\]

\[
y' = \pm \int \frac{x - C_1}{\lambda \sqrt{1 - \frac{(x - C_1)^2}{\lambda^2}}} \, dx.
\]

Let \(\frac{x - C_1}{\lambda} = \cos \theta\). Then

\[
y' = \pm \int \frac{\cos \theta (-\sin \theta) \lambda d\theta}{\sqrt{1 - \cos^2 \theta}} = \mp \lambda \sin \theta + C_2.
\]

Eliminating \(\theta\), we get

\[
(x - C_1)^2 + (y - C_2)^2 = \lambda^2.
\]

The constants \(C_1, C_2\), and \(\lambda\) are to be determined by \(y(-a) = y(a) = 0\) and

\[
K[y] = \int_{-a}^{a} \sqrt{1 + y'^2} \, dx = \ell.
\]

Pointwise Constraints. Consider the variational problem of finding the extremals for the functional

\[
J[y, z] = \int_{a}^{b} F(x, y, z, y', z') \, dx
\]

with \(y(a) = A\) and \(y(b) = B\) subject to the additional pointwise constraint that \(g(x, y, z) = 0\). Suppose we have an extremal \(y = y(x), z = z(x)\) for this variational problem. To derive a necessary condition for the extremal, we embed it in a 1-parameter family \(y = y(x, t), z = z(x, t)\) which satisfy the pointwise constraint \(g(x, y(x, t), z(x, t)) \equiv 0\) for all \(x, t\) so that the given
extremal $y = y(x), z = z(x)$ corresponds to $t = 0$. Taking the first variation of J, we get

$$
(\dagger) \quad \delta J = \int_a^b \left(F_y - \frac{d}{dx} F'_y \right) (\delta y) \, dx + \left(F_z - \frac{d}{dx} F'_z \right) (\delta z) \, dx,
$$

where $\delta J = \left. \frac{dJ}{dt} \right|_{t=0}$ and $\delta y = \left. \frac{\partial y}{\partial t} \right|_{t=0}$ and $\delta z = \left. \frac{\partial z}{\partial t} \right|_{t=0}$. Differentiating $g(x, y(x, t), z(x, t)) \equiv 0$ with respect to t yields

$$
g_y(\delta y) + g_z(\delta z) \equiv 0
$$

for all x. Solving for δz, we get

$$
\delta z = - \frac{g_y}{g_z} (\delta y).
$$

Putting it into (\dagger) gives us

$$
0 = \delta J = \int_a^b \left(F_y - \frac{d}{dx} F'_y \right) (\delta y) \, dx.
$$

By the arbitrariness of δy, we conclude that the integrand vanishes and get

$$
F_y - \frac{d}{dx} F'_y - \frac{g_y}{g_z} \left(F_z - \frac{d}{dx} F'_z \right) = 0
$$

which can be rewritten as

$$
\frac{F_y - \frac{d}{dx} F'_y}{g_y} = \frac{F_z - \frac{d}{dx} F'_z}{g_z}.
$$

Let $-\lambda(x)$ be either of the two equal sides of the above equation. We get

$$
(F - \lambda g)_y - \frac{d}{dx} (F - \lambda g)_y' = 0,
$$

$$
(F - \lambda g)_z - \frac{d}{dx} (F - \lambda g)_z' = 0.
$$

Heuristically, we can also interpret the pointwise condition as a 1-parameter family of integral constraint

$$
\int_a^b (\delta \xi)(x) g(x, y, z) \, dx = 0
$$

with parameter $\xi \in [a, b]$, where $\delta \xi(x)$ is the Dirac delta at ξ so that we end up with one constant multiplier $\lambda(\xi)$ for each of such an integral constraint.