Problem 1 (fluid flow in a channel through a slit). Let Q be a positive number. (a) Find a bounded harmonic function u on the upper half-plane so that

(i) its boundary value on $-\infty < x < 0$ is $\frac{Q}{2}$,

(ii) its boundary value on $0 < x < 1$ is Q, and

(iii) its boundary value on $1 < x < \infty$ is 0.

Hint: Use the construction technique for the integrand of a Schwarz-Christoffel transformation.

(b) Find a bounded harmonic function φ on the strip $\{0 < y < \pi\}$ such that

(i) its boundary value on $\{y = \pi\}$ is $\frac{Q}{2}$,

(ii) its boundary value on $\{x < 0, y = 0\}$ is Q, and

(iii) its boundary value on $\{x > 0, y = 0\}$ is 0.

Hint: Find φ as the function u in (a) composed with a linear fractional transformation and the exponential function.

(c) Show that the curves $\{\varphi(x, y) = \text{constant}\}$ are given by $\tan \frac{y}{2} = c \tanh \frac{x}{2}$ for some constant c. Hint: Use $\sinh(x + iy) = \sinh x \cos y + i \cosh x \sin y$.

(d) Interpret (b) and (c) as solving the following problem of fluid flow. There is a 2-dimensional steady irrotational incompressible fluid flow of constant density in the channel represented by the strip $\{0 < y < \pi\}$. The fluid enters through a slit represented by the origin at the rate of Q units per unit time so that the flow exits at each end of the channel (represented by $x = -\infty$ and $x = \infty$) at the rate of $\frac{Q}{2}$ units per unit time. Show that the equation of a streamline is given by $\tan \frac{y}{2} = c \tanh \frac{x}{2}$ for some constant c.

Problem 2 (elliptic integrals and conformal mapping from the upper half-plane to a rectangle). Let $0 < k < 1$. Let

$$K = \int_{t=0}^{1} \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}.$$
\[iK' = \int_{t=1}^{\frac{\pi}{2}} \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}. \]

Let \(R \) be the open rectangle with vertices at
\[K, \quad K + iK', \quad -K + iK', \quad -K. \]

Let \(g(\zeta) \) be a branch for the function
\[\sqrt{(1-\zeta^2)(1-k^2\zeta^2)} \]
on the upper half-plane. Consider the Schwarz-Christoffel transformation
\[w = \int_0^z \frac{d\zeta}{g(\zeta)}. \]

(a) Verify that for some choice of the branch \(g(\zeta) \) the Schwarz-Christoffel transformation maps the upper half-plane in the \(z \) variable one-one onto the rectangle \(R \) in the \(w \) variable.

(b) Describe how that particular branch of \(g(\zeta) \) is defined (i.e., what cuts have to be made in \(\mathbb{C} \) and what the ranges of the numerical values of the angles in polar representations are).

(c) Describe the correspondence between the quadruple \(\{1, -1, \frac{1}{k}, -\frac{1}{k}\} \) of points in the \(z \) variable and the four vertices of \(R \) in the \(w \) variable (i.e., which point in the quadruple goes to which vertex of \(R \)).

The definite integrals \(K \) and \(K' \) are known as complete elliptic integrals of the first kind.

Problem 3. Let \(h > 0 \). Let \(\Omega \) be the domain in \(\mathbb{C} \) with variable \(w = u + iv \) obtained by removing the rectangle \(\{0 < v \leq h, u \leq 0\} \) from the open upper half-plane \(\{v > 0\} \). Consider the Schwarz-Christoffel transformation from the open upper half-plane in the \(z \) variable to the domain \(\Omega \) in the \(w \) variable whose derivative \(\frac{dw}{dz} \) is given by
\[\frac{dw}{dz} = A \left(\frac{z + 1}{z - 1} \right)^{\frac{1}{2}}, \]
where A is a nonzero complex number. Verify that for some nonconstant complex number A the Schwarz-Christoffel transformation can be written in the following form

$$w = \frac{h}{\pi} \left((z + 1)^{\frac{1}{3}} (z - 1)^{\frac{1}{3}} + \log \left(z + (z + 1)^{\frac{1}{2}} (z - 1)^{\frac{1}{2}} \right) \right),$$

where

(i) the branch of $(z + 1)^{\frac{1}{3}}$ is chosen with $0 \leq \arg(z + 1) \leq \pi$,

(ii) the branch of $(z - 1)^{\frac{1}{3}}$ is chosen with $0 \leq \arg(z - 1) \leq \pi$, and

(iii) the branch of log is the principal branch with the argument defined between $-\pi$ and π.

Moreover, verify that that particular Schwarz-Christoffel transformation maps

(i) the interval $(-\infty, -1]$ in the z variable to the line-segment

$$\{ -\infty < u \leq 0, \ v = h \}$$

in the w variable.

(ii) the interval $[-1, 1]$ in the z variable to the line-segment

$$\{ u = 0, \ 0 \leq v \leq h \}$$

in the w variable, and

(iii) the interval $[1, \infty)$ in the z variable to the line-segment $[0, \infty)$ in the w variable.

Problem 4. Show that, if α and $\beta \neq 0$ are real numbers, the equation

$$z^{2n} + \alpha^2 z^{2n-1} + \beta^2 = 0$$

has $n - 1$ roots with positive real parts if n is odd, and n roots with positive real parts if n is even.

Hint: Apply the argument principle to the right half-disk of radius R and let $R \to \infty$.