Definite Integrals Evaluated by Contour Integration Over a Half Circle.

We are going to use Cauchy’s residue theory over the boundary of a half disk to evaluate definite integrals of the following form.

\[\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} \, dx \quad \text{with} \quad \deg P \leq \deg Q - 2, \]
\[\int_{-\infty}^{\infty} \frac{P(x) \cos x}{Q(x)} \, dx \quad \text{with} \quad \deg P \leq \deg Q - 1, \]
\[\int_{-\infty}^{\infty} \frac{P(x) \sin x}{Q(x)} \, dx \quad \text{with} \quad \deg P \leq \deg Q - 1, \]

Here the polynomials \(P(x), Q(x) \) have real coefficients and are relatively prime. For the first integral the polynomial \(Q(x) \) does not have a real zero. For the second integral the zeroes of the polynomial \(Q(x) \) are at most of order one and are contained in the zero-set of \(\cos x \). For the third integral the zeroes of the polynomial \(Q(x) \) are at most of order one and are contained in the zero-set of \(\sin x \). The integrals are computed by using the following residue theorem.

Theorem (Residues). Let \(D \) be a bounded domain in \(\mathbb{C} \) with piecewise smooth boundary \(C \). Let \(f(z) \) be a meromorphic function on \(D \) which near the boundary of \(D \) is continuous up to the boundary of \(D \). Then

\[\oint_C f(z) \, dz = 2\pi i \sum_{a \in D} \text{Res}_a f, \]

where \(\text{Res}_a f \) is the residue of \(f \) at \(a \).

Proof. Let the poles of \(f \) in \(D \) be \(a_1, \cdots, a_k \). Let \(D_1, \cdots, D_k \) be disjoint closed disks inside \(D \) such that \(D_j \) is centered at \(a_j \) for \(1 \leq j \leq k \). Let \(C_j \) be the boundary of \(D_j \) in the counterclockwise sense. By the theorem of Cauchy-Goursat

\[\oint_C f(z) \, dz = \sum_{j=1}^{k} \oint_{C_j} f(z) \, dz = 2\pi i \sum_{j=1}^{k} \text{Res}_{a_j} f. \]

Q.E.D.

For the evaluation of the above definite integrals when \(\cos x \) or \(\sin x \) appear and \(Q(x) \) has some real zeroes, we need the following notion of a half-residue.
Definition. Let \(f(z) \) be a holomorphic function on the punctured disk

\[\{ z \in \mathbb{C} \mid 0 < |z - a| < R \} \]

(where \(a \in \mathbb{C} \) and \(R > 0 \)) with a simple pole at \(a \). Let \(\alpha > 0 \) and \(C_{r,\alpha} \) be the half circle

\[\{ z = a + re^{i\theta} \mid \alpha \leq \theta \leq \alpha \pi \} \]

in the counterclockwise sense for \(r > 0 \). The half-residue of \(f \) at \(a \) is defined as

\[\frac{1}{2\pi i} \lim_{r \to 0} \int_{C_{r,\alpha}} f(z)dz \]

and is equal to \(\frac{1}{2} \text{Res}_a f \) which is independent of the choice of \(\alpha \).

The verification of

\[\lim_{r \to 0} \frac{1}{2\pi i} \int_{C_{r,\alpha}} f(z)dz = \frac{1}{2} \text{Res}_a f \]

follows from writing

\[f(z) = \frac{c_{-1}}{z - a} + g(z) \]

with \(g(z) \) holomorphic at \(z \) and from using the parametrization \(\theta \mapsto a + re^{i\theta} \) \((\alpha \leq \theta \leq \alpha + \pi)\) for \(C_{r,\alpha} \) to evaluate

\[\int_{C_{r,\alpha}} f(z)dz = c_{-1} \int_{C_{r,\alpha}} \frac{dz}{z - a} + \int_{C_{r,\alpha}} g(z)dz. \]

From

\[\int_{C_{r,\alpha}} \frac{dz}{z - a} = \int_{\theta = \alpha}^{\alpha + \pi} \frac{ire^{i\theta}d\theta}{re^{i\theta}} = \pi i \]

and

\[\lim_{r \to 0} \int_{C_{r,\alpha}} g(z)dz = 0 \]

it follows that

\[\frac{1}{2\pi i} \int_{C_{r,\alpha}} f(z)dz = \frac{1}{2} c_{-1} = \frac{1}{2} \text{Res}_a f. \]

Integrals of Rational Functions over the Real Line. For

\[\int_{x=-\infty}^{\infty} \frac{P(x)dx}{Q(x)} , \]
the integral of \(\frac{P(z)}{Q(z)} \) over the contour of the boundary of the upper half disk of radius \(R \) centered at the origin as \(R \to \infty \) yields

\[
\int_{x=-\infty}^{\infty} \frac{P(x)dx}{Q(x)} = 2\pi i \sum_{\mathrm{Res}_z} \frac{P(z)}{Q(z)}.
\]

The integral \(\int_{C_R} \frac{P(z)}{Q(z)} dz \) over the half-circle

\[C_R := \{ z \in \mathbb{C} \mid z = Re^{i\theta}, 0 \leq \theta \leq 2\pi \} \]

of the meromorphic function \(\frac{P(z)}{Q(z)} \) goes to zero as \(R \to \infty \), because

\[
\sup_{z \in C_R} \left| \frac{P(z)}{Q(z)} \right| = O \left(\frac{1}{R^2} \right)
\]

(where \(O(u) \) is the Landau symbol meaning that the quotient by \(u \) is bounded by a constant as \(R \to \infty \)) and the length of \(C_R \) is \(O(R) \) and as a consequence

\[
\left| \int_{C_R} \frac{P(z)}{Q(z)} dz \right| \leq \left(\sup_{z \in C_R} \left| \frac{P(z)}{Q(z)} \right| \right) \text{(length of } CR) \]

\[
= O \left(\frac{1}{R^2} \cdot R \right) = O \left(\frac{1}{R} \right) \to 0 \text{ as } R \to 0.
\]

Moreover, by the residue theorem

\[
\int_{C_R} \frac{P(z)}{Q(z)} dz + \int_{x=-R}^{R} \frac{P(x)}{Q(x)} = 2\pi i \sum_{\mathrm{Res}_z} \frac{P(z)}{Q(z)} = 2\pi i \sum_{\mathrm{Im} z > 0} \frac{P(z)}{Q(z)}
\]

which yields the formula (‡‡) as \(R \to \infty \).

Example. We now compute

\[
\int_{x=-\infty}^{\infty} \frac{dx}{(x^2 + a^2)^3} \quad (a > 0).
\]
We use the meromorphic function
\[f(z) := \frac{1}{(z^2 + a^2)^3} \]
for which there is only one point in the upper half-plane with nonzero residue. That point is \(i\) which is a pole of order 3 and the residue at it is given by
\[
\frac{1}{2!} \left(\frac{d^2}{dz^2} \frac{(z - ai)^3}{(z + ai)^3} \right)_{z=ai} = \frac{1}{2} \left(\frac{d^2}{dz^2} \frac{1}{(z + ai)^3} \right)_{z=ai} = \frac{1}{2} \left(\frac{(-3)(-4)}{(z + ai)^5} \right)_{z=ai} = \frac{3}{16a^5i}.
\]
We thus conclude from the above formula that
\[
\int_{x=-\infty}^{\infty} \frac{dx}{(x^2 + a^2)^3} = \frac{3\pi}{8a^5}.
\]

Integrals of the Product of a Rational Function and Sine or Cosine Function over the Real Line. For
\[
\int_{x=-\infty}^{\infty} \frac{P(x) \cos x}{Q(x)} \]
and
\[
\int_{x=-\infty}^{\infty} \frac{P(x) \sin x}{Q(x)},
\]
the integral of
\[
\frac{P(z)e^{iz}}{Q(z)}
\]
over the contour of the boundary of the upper half disk of radius \(R\) centered at the origin as \(R \to \infty\) yields
\[
\int_{x=-\infty}^{\infty} \frac{P(x) \cos x}{Q(x)} = \text{Re} \left(2\pi i \sum_{\text{Im } z > 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} + \pi i \sum_{\text{Im } z = 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} \right),
\]
\[
\int_{x=-\infty}^{\infty} \frac{P(x) \sin x}{Q(x)} = \text{Im} \left(2\pi i \sum_{\text{Im } z > 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} + \pi i \sum_{\text{Im } z = 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} \right).
\]
For this computation the following two new ingredients have to be incorporated.
(i) Since the degree of $Q(z)$ may only be one more than that of $P(z)$, to make sure that
\[
\int_{C_R} \frac{P(z)e^{iz}}{Q(z)} dz \to 0 \text{ as } R \to 0
\]
we have to do one integration by parts by integrating the factor to get e^{iz} first
\[
\int_{C_R} \frac{P(z)e^{iz}}{Q(z)} dz
\]
\[
= \frac{P(z)e^{iz}}{iQ(z)} \bigg|_{z=-R}^{R} - \int_{C_R} \left(\frac{d}{dz} \frac{P(z)}{Q(z)} \right) e^{iz} dz
\]
\[
= \frac{P(z)e^{iz}}{iQ(z)} \bigg|_{z=-R}^{R} - \int_{C_R} \frac{(P'(z)Q(z) - P(z)Q'(z))}{Q(z)^2} e^{iz} dz
\]
and then use
\[
\left| \frac{(P'(z)Q(z) - P(z)Q'(z))}{Q(z)^2} \right| = O \left(\frac{1}{R^2} \right)
\]
(from the degree of $P'(z)Q(z) - P(z)Q'(z)$ no more than the degree of $Q(z)^2$ minus 2) and also use
\[
|e^{iz}| = e^{-\text{Im} z} \leq 1
\]
(from $\text{Im} z > 0$ on C_R).

(ii) For zero x_0 of $Q(x)$ on the real line \mathbb{R} we have to modify the contour $\mathbb{R} + C_R$ by replacing $[x_0 - r, x_0 + r]$ by the lower half-circle
\[
C_{r,x_0} := \{ z \in \mathbb{C} \mid z = x_0 + re^{i\theta}, -\pi \leq \theta \leq \pi \}
\]
of radius $r > 0$ centered at x_0 in the counterclockwise sense. We label the real roots of $Q(x)$ as $\{x_j\}_j$ and choose the index j such that
\[
\{ x \in \mathbb{R} \mid Q(x) = 0, -R \leq x \leq R \} = \{x_j\}_{j \in J_R}
\]
for $R > 0$. From the residue theorem
\[
\int_{C_{r,x_0}} \frac{P(z)e^{iz}}{Q(z)} dz + \int_{[-R,R] - \bigcup_{1 \leq j \leq J_R} [x_j - r, x_j + r]} \frac{P(x)e^{ix}}{Q(x)} dx + \sum_{j=1}^{J_R} \int_{C_{r,x_j}} \frac{P(z)e^{iz}}{Q(z)} dz
\]
is equal to
\[2\pi i \sum_{|z|<R, \ Im \ z \geq 0} \text{Res}_z \frac{P(z)}{Q(z)}. \]

Finally we get our two formulas
\[
\int_{x=-\infty}^{\infty} \frac{P(x) \cos x \, dx}{Q(x)} = \text{Re} \left(2\pi i \sum_{\text{Im} \ z > 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} + \pi i \sum_{\text{Im} \ z = 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} \right),
\]
\[
\int_{x=-\infty}^{\infty} \frac{P(x) \sin x \, dx}{Q(x)} = \text{Im} \left(2\pi i \sum_{\text{Im} \ z > 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} + \pi i \sum_{\text{Im} \ z = 0} \text{Res}_z \frac{P(z)e^{iz}}{Q(z)} \right)
\]

by letting \(R \to \infty \) and \(r \to 0 \) and using the half-residue theorem
\[
\lim_{r \to 0} \int_{C_r,x_j} \frac{P(z)e^{iz}}{Q(z)} \, dz = \pi i \text{Res}_{x_j} \frac{P(z)e^{iz}}{Q(z)}
\]
for every real root \(x_j \) of \(Q(x) \) and then taking the real and imaginary parts of both sides.

Example. We now compute
\[
\int_{x=-\infty}^{\infty} \frac{\sin x \, dx}{x}
\]
in the sense that it is the limit of
\[
\int_{x=-R}^{R} \frac{\sin x \, dx}{x}
\]
as \(R \to \infty \). The answer is, according to the above formula,
\[
\text{Im} \left(\pi i \text{Res}_{z=0} \frac{e^{iz}}{z} \right) = \pi.
\]