Name: ____________________________

In Class MidTerm Exam for Math 113
10 - 11:30 am, March 20, 2008

<table>
<thead>
<tr>
<th>Problem</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

• Please show ALL your work on this exam paper. Partial credit will be awarded where appropriate.

• Some problems will be asking you to prove results covered in class. For those that do not, you may quote without proof the theorems/propositions/lemmas given during lecture as long as you state each result clearly. Points may be deducted for incorrect or missing hypotheses.

• NO calculators are permitted.
1. (15 points) Simplify the following expressions:

 (a) $e^{\log i}$
 (b) $\log i$
 (c) $i^{\log(-1)}$
2. (15 points)
 (a) Prove that the nth roots of unity can be expressed as $1, w, w^2, w^3, \ldots, w^{n-1}$.
 (b) What is w?
 (c) Show that the sum of the nth roots of unity is zero.
3. (a) (7 points) Is $f(z) = \overline{z}$ analytic? Prove or disprove.

(b) (7 points) Let A be an open subset of \mathbb{C} and $A^* = \{ z : \overline{z} \in A \}$. Suppose f is analytic on A and define a function g on A^* by

$$g(z) = f(\overline{z}).$$

Show that g is analytic on A^*.
4. (15 points)

(a) Define what it means for a function to be analytic (holomorphic) at a point $z \in \mathbb{C}$.
(b) State the Cauchy-Riemann equations.
(c) Prove that a function analytic at a point $z \in \mathbb{C}$ satisfies the Cauchy-Riemann equations at that point.
5. Evaluate the following integrals with \(\gamma \) being the unit circle centered at the origin:

(a) (3 points) \(\int_{\gamma} \sin z \, dz \).

(b) (3 points) \(\int_{\gamma} \frac{\sin z}{z} \, dz \).

(c) (3 points) \(\int_{\gamma} \frac{\sin z}{z^2} \, dz \).

(d) (3 points) \(\int_{\gamma} \frac{\sin(e^z)}{z^2} \, dz \).
6. (14 points) Evaluate \(\int_0^{2\pi} e^{-i\theta} e^{i\theta} d\theta \).
7. (15 points) Let \(f \) be entire and let \(|f(z)| \leq M \) for \(z \) on the circle \(|z| = R \) with \(R \) fixed. Prove that

\[
|f^{(k)}(z)| \leq \frac{k!M}{(R - r)^k}, \quad r = |z|,
\]

for all \(0 \leq r < R \) and for all \(k = 0, 1, 2, 3, \ldots \)
Extra space for work: