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1 Finiteness conditions

1.1 Fix a cocomplete category C (as usual “category” means “∞-category”). This section contains a
discussion of finiteness conditions on objects of categories. Not all of the material will be used in Section 2,
but it will be important later.

Definition 1.1.1. An object X of C is called compact if the functor C → Spc corepresented by X preserves
filtered colimits.

Equivalently, for all filtered diagrams F : I → C , any morphism X → colimF factors through F (i)→ F
for some i ∈ I .

Suppose that C is stable. Then the functor corepresented by an object X naturally factors through the
functor Ω∞ : Sptr → Spc, where Sptr is the category of spectra. The resulting functor C → Sptr preserves
all colimits, or equivalently direct sums, if and only if X is compact. If C has the structure of a DG category
over a field k, then one can replace Sptr by Vect and Ω∞ by the Dold-Kan functor.

Given a category C0 with finite colimits, its ind-completion Ind(C0) is a cocomplete category equipped
with a functor C0 → Ind(C0) (automatically fully faithful) with the property that for any cocomplete
category D , restriction induces an equivalence from colimit-preserving functors Ind(C0)→ D to right exact
(i.e. finite-colimit preserving) functors C0 → D . More precisely, Ind is the left adjoint of the forgetful functor
from cocomplete categories and colimit-preserving functors to categories with finite colimits and right exact
functors. Informally speaking, Ind(C0) is obtained from C0 by freely adjoining filtered colimits.

One can construct Ind(C0) as follows: since the category of presheaves Fun(C op
0 ,Spc) is cocomplete, the

Yoneda embedding extends to a functor

Ind(C0) −→ Fun(C op
0 ,Spc),

which is fully faithful with essential image consisting of functors which preserve finite limits. On functors
Ind is the operation of right Kan extension. If C0 is stable or a (non-cocomplete) DG category then one can
replace Spc with Sptr or Vect. In particular Ind(C0) is then stable or DG respectively.

Proposition 1.1.2. An object of Ind(C0) is compact if and only if it is a retract of an object in C0.

Proof. We prove the “only if” implication, leaving the “if” direction to the interested reader. Suppose that
X is a compact object of Ind(C0) and write X→̃ colimiXi for some filtered diagram I → C0. But then by
compactness the identity on X factors through some Xi, which is to say X is a retract of Xi.

The following result will be used to define the t-structure on ind-coherent sheaves.

Proposition 1.1.3. If C0 is a stable category with a t-structure, then Ind(C0) has a unique t-structure such
that C0 → C is t-exact and τ≤0 is continuous.
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Proof. Observe that the inclusion C≤0
0 → C0 induces a fully faithful functor

C≤0 := Ind(C≤0
0 ) −→ Ind(C0) =: C .

We claim that this subcategory defines a t-structure on C . The right adjoint to the inclusion is given by
τ≤0 := Ind(τ≤0), and in particular is continuous. Now suppose X → Y → Z is an exact triangle where X
and Z belong to C≤0. Then Y = fib(Z → ΣX), and we can write X = colimXi and Z = colimj Zj for some
filtered diagrams. Since τ≤0 is a right adjoint and hence preserves limits, we have

τ≤0Y −̃→ fib(colimj τ
≤0Zj → colimi τ

≤0Xi).

But we know that τ≤0Xi→̃Xi for every i and similarly for the Zj , so it follows that τ≤0Y →̃Y .

For a cocomplete category C we denote by Cc the full subcategory of compact objects. We call C
compactly generated if the canonical functor Ind(Cc)→ C is an equivalence. There is another way that one
might formulate this notion: the subcategory generated by a collection of objects is the smallest cocomplete
subcategory containing them.

Proposition 1.1.4. A cocomplete category C is compactly generated if and only if there is a collection of
compact objects which generates C .

Proof. The “only if” direction is simple, so we prove the “if” direction. The hypothesis is clearly equivalent
to essential surjectivity of Ind(Cc)→ C , so let us show that this functor is always fully faithful. Fix objects
X and Y of Ind(Cc), presented as X = colimiXi and Y = colimj Yj where i 7→ Xi and j 7→ Yj are filtered
diagrams in Cc. We need to prove that

HomInd(Cc)(X,Y )−̃→HomC (colim
i

Xi, colim
j

Yj),

where the colimits on the right hand side are taken in C . Indeed, both sides are identified with

lim
i

colim
j

HomCc(Xi, Yj).

Example 1.1.5. An object of Vect is compact if and only if it is bounded with finite-dimensional cohomolo-
gies. More generally, for an almost finite type scheme S an object F of QCoh(S) is compact if and only if
it is perfect. If S is classical then F is perfect if and only if it is isomorphic to a bounded complex of vector
bundles. In general Perf(S) is the smallest full subcategory QCoh(S) which is stable, contains OS , and is
closed under taking direct summands. Moreover, QCoh(S) is compactly generated.

The following is a very useful property of compactly generated categories in practice.

Exercise 1.1.6. Let F : C → D be a continuous functor between compactly generated categories. Then
the right adjoint G : D → C , which exists by the adjoint functor theorem, is continuous if and only if F
preserves compact objects.

1.2 Now suppose that C has a symmetric monoidal structure.

Definition 1.2.1. An object X of C is called dualizable if there exists an object X∨ and morphisms
η : 1→ X ⊗X∨ and ε : X∨ ⊗X → 1 such that

X
η⊗idX−→ X ⊗X∨ ⊗X idX ⊗ε−→ X

is homotopic to idX and

X∨
idX∨⊗η−→ X∨ ⊗X ⊗X∨ ε⊗idX∨−→ X∨

is homotopic to idX∨ .
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Suppose X is dualizable and fix X∨ and ε : X∨⊗X → 1 as above. Then there is a canonical isomorphism

X∨ ⊗ Y −̃→HomC (X,Y ),

where the latter object is the internal Hom which represents the functor

Z 7→ HomC (Z ⊗X,Y ).

In particular there is a canonical choice of dual X∨ = HomC (X,1), and we can take ε to be evaluation.

Exercise 1.2.2. Show that if X is dualizable in C then there is a canonical isomorphism X→̃(X∨)∨, and
deduce that X 7→ X∨ extends to a contravariant autoequivalence of the full category of C consisting of
dualizable objects.

Exercise 1.2.3. Suppose that C is cocomplete and that the tensor product preserves colimits in each
variable. Prove that if the unit object of C is compact, then any dualizable object is compact.

Example 1.2.4. For an almost finite type scheme S, an object of QCoh(S) is dualizable if and only if it is
perfect, so in this case dualizability is equivalent to compactness.

Let Catcocmpl
stab be the category of cocomplete stable categories with continuous and exact (i.e. colimit-

preserving) functors. Recall that Catcocmpl
stab has a canonical symmetric monoidal structure, called the Lurie

tensor product, whose unit is Sptr. For two cocomplete stable categories C and D there is a functor
C ×D → C ⊗D such that for any E in Catcocmpl

stab the induced functor

Functs
ex (C ⊗D ,E ) −→ Fun(C ×D ,E )

is fully faithful with essential image consisting of functors C × D → E which are continuous and exact in
each variable.

Tensor product of complexes makes Vect into a commutative algebra object in Catcocmpl
stab , i.e. a symmetric

monoidal category whose tensor product is continuous and exact in each variable. The category DGCat of
DG categories can then be defined as the category of Vect-modules in Catcocmpl

stab .

Exercise 1.2.5. For any stable categories C and D there is a canonical equivalence

Ind(C ×D)−̃→ Ind(C )⊗ Ind(D).

A dualizable category is a dualizable object of Catcocmpl
stab . Dualizable categories have favorable properties

with respect to limits and colimits.
The following result produces many examples of dualizable categories.

Proposition 1.2.6. A compactly generated stable category C is dualizable with dual

Ind((Cc)
op)−̃→Functs

ex (C ,Sptr).

Proof. The pairing ε is defined as the right Kan extension of

Hom : (Cc)
op × Cc −→ Sptr

along
(Cc)

op × Cc −→ Ind((Cc)
op × Cc)−̃→ Ind((Cc)

op)⊗ C .

Under the canonical equivalence
Ind((Cc)

op)−̃→Functs
ex (C ,Sptr)

one can show that ε is given by evaluation. We denote this category by C ∨ for notational convenience,
although of course we have not yet proved the duality.

We claim that for any category D in Catcocmpl
stab the functor

C ∨ ⊗D −→ Functs
ex (C ,D)
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which corresponds to

C ∨ ⊗ C ⊗D
ε⊗idD−→ Sptr⊗D = D

is an equivalence. Once this is proved we can define η to be the unique continuous and exact functor
Sptr→ Endcts

ex (C )→̃C ∨ ⊗ C which sends the sphere spectrum to the identity, and from there it is not hard
to check the necessary relations.

It suffices to prove that for any E in Catcocmpl
stab the functor

Functs
ex (Funex(Cc,D),E )−̃→Functs

ex (Functs
ex (C ,D),E ) −→ Functs

ex (C ∨ ⊗D ,E )

is an equivalence. First observe that passage to right adjoints and opposites defines an equivalence

Functs
ex (Funex(Cc,D),E )−̃→Functs

ex (E op,Funex(Cc,D)op).

But now we have

Functs
ex (E op,Funex(Cc,D)op)−̃→Functs

ex (E op,Funex((Cc)
op,Dop))

−̃→Functs
ex (E op,Functs

ex (C ∨,Dop))

−̃→Functs
ex (C ∨,Functs

ex (E op,Dop))

−̃→Functs
ex (C ∨,Functs

ex (D ,E ))

−̃→Functs
ex (C ∨ ⊗D ,E ).

Let F : C → D be a continuous exact functor between compactly generated stable categories which
preserves compact objects. Write Fc : Cc → Dc for the resulting functor, so we obtain

Ind(F op
c ) : C ∨ = Ind((Cc)

op) −→ Ind((Dc)
op) = D∨.

By Exercise 1.1.6, the assumption that F preserves compact objects is equivalent to continuity of the right
adjoint G : D → C . Thus we have another functor C ∨ → D∨, namely the dual G∨.

Proposition 1.2.7. There is a canonical isomorphism Ind(F op
c )→̃G∨.

Proof. Observe that

Functs
ex (C ∨,D∨)−̃→Functs

ex (C ∨ ⊗D ,Sptr)−̃→Funex(C op
c ×Dc,Sptr).

One checks that Ind(F op
c ) corresponds to the functor

C op
c ×Dc −→ C op ×D

F op×idD−→ Dop ×D
HomD−→ Sptr,

while G∨ corresponds to

C op
c ×Dc −→ C op ×D

idCop ×G−→ C op × C
HomC−→ Sptr .

The adjunction of F and G identifies these functors.

2 Ind-coherent sheaves

2.1 In this section we begin to set up the theory of ind-coherent sheaves. We will define the pushforward
and pullback functors, but stop short of discussing base change and Serre duality.

Let S be a (derived) scheme. Recall that the DG category of quasi-coherent sheaves on S is defined by

QCoh(S) := lim
SpecA→S

A-mod,
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where the limit runs over affine open subschemes of S. Observe that QCoh(S) has a natural t-stucture: an
object F belongs to QCoh(S)≤0 if, for every open embedding f : SpecA→ S, the pullback f∗F belongs to
A-mod≤0. This t-structure is compatible with filtered colimits, i.e. the truncation functor τ≤0 is continuous.

We take as given the the functor

QCoh∗ : Schop −→ DGCat,

where Sch denotes the category of schemes. By passing to right adjoints we obtain

QCoh∗ : Sch −→ DGCat .

Assume from now on that S is almost of finite type, and in particular quasi-compact. Then the (non-
cocomplete) full subcategory Perf(S) (see Example 1.1.5) compactly generates QCoh(S), i.e.

Ind(Perf(S))−̃→QCoh(S).

There is another subcategory of “small” objects in QCoh(S), namely the coherent complexes Coh(S). An
object F of QCoh(S) belongs to Coh(S) if it is cohomologically bounded and all its cohomology sheaves are
locally finitely generated. Observe that OS is coherent if and only if S is eventually coconnective, so in that
case Perf(S) ⊂ Coh(S) because Coh(S) is stable and closed under taking direct summands. This inclusion
is an equivalence if and only if S is a smooth classical scheme (for S classical this is a theorem of Serre).

Definition 2.1.1. The category of ind-coherent sheaves on S is

IndCoh(S) := Ind(Coh(S)).

By Proposition 1.1.3 there is a unique t-structure on IndCoh(S) which is compatible with filtered colimits
and extends the t-structure on Coh(S).

Right Kan extension of the inclusion Coh(S) ⊂ QCoh(S) produces a t-exact functor

ΨS : IndCoh(S) −→ QCoh(S),

which is an equivalence if and only if S is a smooth classical scheme. This functor admits a left adjoint

ΞS : QCoh(S) −→ IndCoh(S),

if and only if S is eventually coconnective. In that case ΞS is fully faithful and ΨS is essentially surjective.

Lemma 2.1.2. Let F be an object of QCoh(S)− whose cohomology sheaves are finitely generated. Then for
any n ∈ Z there exists F0 in Perf(S) and a morphism F0 → F whose cofiber belongs to QCoh(S)≤n.

Proof. Let m be the largest integer such that Hm(F ) 6= 0. Since F is a filtered colimit of objects in
Perf(S) and Hm(F ) is finitely generated, we can find a perfect complex G1 and a map G1 → F such that
Hm(G1) → Hm(F ) is surjective. Truncating if necessary, we can assume that G1 belongs to Perf(S)≤m.
The surjectivity implies that the cofiber of this morphism belongs to QCoh(S)≤m−1. Now apply the same
procedure to the fiber of G1 → F to obtain G ′1, and set

G2 = cofib(G ′1 → G1).

One checks that the canonical map G2 → F has cofiber belonging to QCoh(S)≤m−2. Iterating this procedure
we find that if k ≥ m− n then we can take F0 = Gk.

Proposition 2.1.3. The functor ΨS induces an equivalence

IndCoh(S)+−̃→QCoh(S)+

on eventually coconnective objects.
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Proof. Using shifts, we reduce to proving that

ΨS : IndCoh(S)≥0−̃→QCoh(S)≥0.

This functor is essentially surjective because any object of QCoh(S)≥0 can be written as a filtered colimit
of objects in Coh(S)≥0.

As for fully faithfulness, we will prove that

HomIndCoh(S)(F ,G )−̃→HomQCoh(S)(ΨS(F ),ΨS(G ))

for any G in IndCoh(S)≥0 and any F in IndCoh(S), and moreover we can assume that F lies in Coh(S).
As previously mentioned G can be written as a filtered colimit of objects in Coh(S)≥0, so it suffices to show
that the functor QCoh(S)≤0 → Vect≤0 given by

G 7→ τ≤0 HomQCoh(S)(F ,G )

commutes with filtered colimits. Apply the lemma to obtain F0 → F where F0 is perfect and the cofiber
belongs to Coh(S)≤−1. This implies that

τ≤0 HomQCoh(S)(F ,G )−̃→τ≤0 HomQCoh(S)(F0,G ),

and since F0 is compact in QCoh(S) we are done.

It follows that the kernel of ΨS is the full subcategory IndCoh(S)nil consisting of objects F satisfying
Hn(F ) = 0 for all n ∈ Z.

Example 2.1.4. Let A := k[ε]/(ε2) be the algebra of dual numbers and D := SpecA. Observe that δ0 lies
in Coh(D) but not Perf(D), because it has the projective resolution

· · · ε−→ A
ε−→ A −→ 0 −→ · · ·

and therefore Hn(i∗δ0) = k for all i ≤ 0.
The short exact sequence

0 −→ δ0 −→ OD −→ δ0 −→ 0

yields a nonzero morphism δ0 → δ0[1]. Shifting this, we obtain a directed system

δ0 −→ δ0[1] −→ δ0[2] −→ · · · ,

which defines an object Fnil in IndCoh(D). Clearly ΨD(Fnil) = 0 because Hn(Fnil) = 0 for all n ∈ Z, i.e.
Fnil belongs to IndCoh(D)nil (the cohomology “escapes to −∞”).

Exercise 2.1.5. Check that F 6= 0 in IndCoh(D).

It turns out that direct image of ind-coherent sheaves is easier to define than inverse image. Let f : S → T
be a morphism of almost finite type schemes. The pushforward functor f∗ is left t-exact and in particular
induces a functor QCoh(S)+ → QCoh(T )+. We define the IndCoh direct image

f IndCoh
∗ : IndCoh(S)→ IndCoh(T )

to be the right Kan extension of

Coh(S) ⊂ QCoh(S)+ f∗−→ QCoh(T )+−̃→ IndCoh(T )+ ⊂ IndCoh(T ).

When T = Spec k we write
ΓIndCoh(S,F ) = f IndCoh

∗ F .

Since the operation of right Kan extension is functorial, we obtain a functor

IndCoh∗ : Schaft −→ DGCat,

where the subscript aft means almost of finite type.

Exercise 2.1.6. In the notation of Example 2.1.4, compute ΓIndCoh(D,F ).
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2.2 The natural inverse image functor for ind-coherent sheaves is !-pullback. Namely, for any morphism
f : S → T of schemes almost of finite type, we will construct a functor

f ! : IndCoh(T ) −→ IndCoh(S).

Eventually, this will be upgraded to a functor

IndCoh! : Schop
aft −→ DGCat .

First let us define, for f eventually coconnective, the ∗-pullback functor f∗IndCoh. That hypothesis is
equivalent to requiring that f∗ sends QCoh(T )+ into QCoh(S)+, which implies that it sends Coh(T ) into
Coh(S). We define f∗IndCoh : IndCoh(T )→ IndCoh(S) to be the right Kan extension of

Coh(T )
f∗−→ Coh(S) ⊂ IndCoh(S).

Now if f is an open embedding (more generally, étale) then in particular it is eventually coconnective,
and we define f ! := f∗IndCoh. By functoriality of right Kan extensions this extends to

IndCoh! : (Schopen
aft )op −→ DGCat,

where the superscript indicates that we only allow open embeddings. If f is proper (meaning it is proper
on the level of classical schemes), then f IndCoh

∗ sends Coh(X) into Coh(Y ), so by Exercises 1.1.2 and 1.1.6
it admits a continuous right adjoint, which we also call f !. Since passing to right adjoints is functorial, we
obtain a functor

IndCoh! : (Schproper
aft )op −→ DGCat,

where the superscript indicates that we only allow proper morphisms.
Now recall the following well-known theorem of Nagata.

Theorem 2.2.1. Any morphism between (separated) classical schemes of finite type factorizes into an open
embedding followed by a proper morphism.

Exercise 2.2.2. Find such a factorization for the morphism A2 → A2 given by (x, y) 7→ (x, xy).

In fact, Nagata’s theorem immediately implies the same statement for derived schemes. For any S → T
the classical theorem yields a factorization

Scl −→ Z ′ −→ T cl.

Define Z := Z ′ qScl S, which fits into the desired factorization S → Z → T .
So we can define f ! for an arbitrary morphism f , but now it is not clear that this definition is independent

of the chosen Nagata factorization. One can resolve this issue by proving that the category of Nagata
factorizations of a given morphism is contractible. This implies that there is a unique functor

IndCoh! : Schop
aft −→ DGCat

which restricts to the same-named functors on (Schopen
aft )op and (Schproper

aft )op.

Example 2.2.3. Let us return to the situation of Example 2.1.4. Let i : Spec k → D be the unique point,
so for any F in IndCoh(D) we have

i!F = HomIndCoh(D)(δ0,F ).

Thus i! lifts to a functor
i!enh : IndCoh(D) −→ B-modr

to right B-modules, where B = EndCoh(D)(δ0). It is not hard to check that i! is conservative, and since it

is continuous and admits a left adjoint the Barr-Beck theorem implies that i!enh is an equivalence. In other
words, δ0 is a compact generator for IndCoh(D), so by derived Morita theory this category is identified with
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right modules over B. Using the projective resolution from Example 2.1.4, one shows that B = k[ζ] is the
free DG algebra on a single generator ζ in degree 1. This algebra is noncommutative, but there is a canonical
isomorphism B→̃Bop given by ζ 7→ −ζ.

Let us try to describe the adjoint functors

A-mod = QCoh(D) IndCoh(D) = B-modr
ΞD

ΨD

in terms of the algebra of A and B. One computes i!ΞD(OD) = k, which means ΞD sends A to the
augmentation B-module k. By continuity it follows that ΞD(M) = k⊗AM for any A-module M , where we
use the isomorphism B→̃Bop to get a right B-action. We know that Ξ is fully faithful, which implies that

A = EndA(A)−̃→EndB(k).

Alternatively, one can show A = EndB(k) directly using the exact triangle

B[−1] −→ B −→ k.

It is straightforward to check that ΨD sends M 7→M ⊗B k.

Exercise 2.2.4. Show that the essential image of ΞD consists of B-modules on which ζ acts locally nilpo-
tently. Characterize IndCoh(D)nil and show that the object Fnil from Exercise 2.1.4 is a compact generator
for IndCoh(D)nil.
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