
CANONICAL FORKING IN AECS

WILL BONEY, RAMI GROSSBERG, ALEXEI KOLESNIKOV AND SEBASTIEN VASEY

Abstract. Boney and Grossberg [BG] proved that every nice AEC has an in-
dependence relation. We prove that this relation is unique: In any given AEC,
there can exist at most one independence relation that satisfies existence, exten-
sion, uniqueness and local character. While doing this, we study more generally
properties of independence relations for AECs and also prove a canonicity re-
sult for Shelah’s good frames. The usual tools of first-order logic (like the finite
equivalence relation theorem or the type amalgamation theorem in simple theo-
ries) are not available in this context. In addition to the loss of the compactness
theorem, we have the added difficulty of not being able to assume that types are
sets of formulas. We work axiomatically and develop new tools to understand
this general framework.
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1. Introduction

Let K be an abstract elementary class (AEC) which satisfies amalgamation, joint
embedding, and no maximal models. These assumptions allow us to work inside
its monster model C. The main results of this paper are:
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(1) There is at most one independence relation satisfying existence, extension,
uniqueness and local character (Corollary 5.18).

(2) Under some reasonable conditions, the coheir relation of [BG] has local
character and is canonical (Theorems 6.4 and 6.7).

(3) Shelah’s weakly successful good λ-frames are canonical: an AEC can have
at most one such frame (Theorem 6.13).

To understand their relevance, some history is necessary.

In 1970, Shelah discovered the notion “tp(ā/B) forks over A” (for A ⊆ B), a
generalization of Morley’s rank in ω-stable theories. Its basic properties were
published in [She78].

In 1974, Lascar [Las76, Theorem 4.9] established that for superstable theories,
any relation between ā, B, A satisfying the basic properties of forking is Shelah’s
forking relation. In 1984, Harnik and Harrington [HH84, Theorem 5.8] extended
Lascar’s abstract characterization to stable theories. Their main device was the
finite equivalence relation theorem. In 1997, Kim and Pillay [KP97, Theorem 4.2]
published an extension to simple theories, using the independence theorem (also
known as the type-amalgamation theorem).

This paper deals with the characterization of independence relations in various
non-elementary classes. An early attempt on this problem can be found in Kolesnikov’s
[Kol05], which focuses on some important particular cases (e.g. homogeneous
model theory and classes of atomic models). We work in a more general con-
text, and only rely on the abstract properties of independence. We cannot assume
that types are sets of formulas, so work only with Galois (i.e. orbital) types.

In [She87, Chapter II] (which later appeared as [She09c]), Shelah gave the first
axiomatic definition of independence in AECs, and showed it generalized first-
order forking. In [She09a], Shelah gave a similar definition, localized to models
of a particular size λ (the so-called “good λ-frame”). Shelah proved that a good
frame existed, under very strong assumptions (typically, the class is required to be
categorical in two consecutive cardinals).

Recently, working with a different set of assumptions (the existence of a monster
model and tameness), Boney and Grossberg [BG] gave conditions (namely a form
of Galois stability and the extension property for coheir) under which an AEC has
a global independence relation. This showed that one could study independence
in a broad family of AECs. Our paper is strongly motivated by both [She09a]
and [BG].

The paper is structured as follows. In Section 2, we fix our notation, and review
some of the basic concepts in the theory of AECs. In Section 3, we introduce
independence relations, the main object of study of this paper, as well as some
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important properties they could satisfy, such as extension and uniqueness. We
consider two examples: coheir and nonsplitting.

In Section 4, we prove a weaker version of (1) (Corollary 4.14) that has some extra
assumptions. This is the core of the paper.

In Section 5, we go back to the properties listed in Section 3 and investigate
relations between them. We show that some of the hypotheses in Corollary 4.14 are
redundant. For example, we show that the symmetry and transitivity properties
follow from existence, extension, uniqueness, and local character. We conclude by
proving (1). Finally, in Section 6, we apply our methods to the coheir relation
considered in [BG] and to Shelah’s good frames, proving (2) and (6.13).

While we work in a more general framework, the basic results of Sections 2-3
often have proofs that are very similar to their first-order analog. Readers feeling
confident in their knowledge of first-order nonforking can start reading directly
from Section 4 and refer back to Sections 2-3 as needed.

This paper was written while the first and fourth authors were working on a Ph.D.
under the direction of Rami Grossberg at Carnegie Mellon University. They would
like to thank Professor Grossberg for his guidance and assistance in their research
in general and in this work specifically.

2. Notation and prerequisites

We assume the reader is familiar with abstract elementary classes and the basic
related concepts. We briefly review what we need in this paper, and set up some
notation.

Hypothesis 2.1. We work in a fixed abstract elementary class (K,≺) which
satisfies amalgamation, joint embedding, and no maximal model.

2.1. The monster model.

Definition 2.2. Let µ > LS(K) be a cardinal. For models M ≺ N , we say N
is a µ-universal extension of M if for any M ′ � M , with ||M ′|| < µ, M ′ can be
embedded inside N over M , i.e. there exists a K-embedding f : M ′ → N fixing
M pointwise. We say N is a universal extension of M if it is a ||M ||+-universal
extension of M .

Definition 2.3. Let µ > LS(K) be a cardinal. We say a model N is µ-model
homogeneous if for any M ≺ N , N is a µ-universal extension of M . We say
M is µ-saturated if it is µ-model homogeneous (this is equivalent to the classical
definition by [She01, Lemma 0.26]).

Definition 2.4 (Monster model). Using amalgamation, joint embedding and no
maximal model, we can build a strictly increasing continuous chain (Ci)i∈OR, where
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for all i, Ci+1 is universal over Ci. We call the union C :=
⋃
i∈OR Ci the monster

model1 of K.

Any model of K can be embedded inside the monster model, so we will adopt the
convention that any set or model we consider is a subset or a substructure of C.

We write AutA(C) for the set of automorphisms of C fixing A pointwise. When
A = ∅, we omit it.

We will use the following without comments.

Remark 2.5. Let M , N be models. By our convention, M ≺ C and N ≺ C, thus
by the coherence axiom, M ⊆ N implies M ≺ N .

Definition 2.6. Let I be an index set. Let Ā := (Ai)i∈I , B̄ := (Bi)i∈I be sequences
of sets, and let C be a set. We write f : Ā ≡C B̄ to mean that f ∈ AutC(C), and
for all i ∈ I, f [Ai] = Bi. We write Ā ≡C B̄ to mean that f : Ā ≡C B̄ for some f .
When C is empty, we omit it.

We will most often use this notation when I has a single element, or when all
the sets are singletons. In the later case, we identify a set with the corresponding
singleton, i.e. if ā = (ai)i∈I and b̄ := (bi)i∈I are sequences, we write f : ā ≡C b̄
instead of f : Ā ≡C B̄, with Ai := {ai}, Bi := {bi}. We write gtp(ā/C) for the ≡C
equivalence class of ā. This corresponds to the usual notion of Galois types first
defined in [She01, Definition 0.17].

Note that for sets A,B, we have f : A ≡C B precisely when there are enumerations
ā, b̄ of A and B respectively such that f : ā ≡C b̄.

2.2. Tameness and stability. Although we will make no serious use of it in this
paper, we briefly review the notion of tameness. Although it appears implicitly
in [She99], tameness was first introduced in [GV06b] and used in [GV06a] to prove
an upward categoricity transfer. Our definition follows [Bonc, Definition 3.1].

Definition 2.7 (Tameness). Let κ > LS(K). Let α be a cardinal. We say K is
κ-tame for α-length types if for any tuples ā, b̄ of length α, and any M ∈ K, if
ā 6≡M b̄, there exists M0 ≺M of size ≤ κ such that ā 6≡M0 b̄.

We say K is < κ-tame for α-length types if for any tuples ā, b̄ of length α, and any
M ∈ K, if ā 6≡M b̄, there exists M0 ≺M of size < κ such that ā 6≡M0 b̄.

We say K is κ-tame if it is κ-tame for 1-length types. We say K is fully κ-tame if
it is κ-tame for all lengths. Similarly for < κ-tame.

The following dual of tameness is introduced in [Bonc, Definition 3.4]:

1Since C is a proper class, it is strictly speaking not an element of K. We ignore this detail,
since we could always replace OR in the definition of C by a cardinal much bigger than the size
of the models under discussion.
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Definition 2.8 (Type shortness). Let κ > LS(K). Let µ be a cardinal. We say
K is κ-type short over µ-sized models if for any index set I, any enumerations
ā := (ai)i∈I , b̄ := (bi)i∈I of type I, and any M ∈ Kµ, if ā 6≡M b̄, there is I0 ⊆ I of
size ≤ κ such that āI0 6≡M b̄I0 . Here āI0 := (ai)i∈I0 .

We define < κ-type short over µ-sized models similarly.

We say K is fully κ-type short if it is κ-type short over µ-sized models for all µ.
Similarly for < κ-type short.

We also recall that we can define a notion of stability:

Definition 2.9 (Stability). Let λ ≥ LS(K) and α be cardinals. We say K is
α-stable in λ if for any M ∈ Kλ, S

α(M) := {gtp(b̄/M) | b̄ ∈ αC} has cardinality
≤ λ. Equivalently, given any collection {Ai}i<λ+ , where for all i < λ+, |Ai| = α,
there exists i < j such that Ai ≡M Aj.

We say K is stable in λ if it is 1-stable in λ.

We say K is α-stable if it is α-stable in λ for some λ ≥ LS(K). We say K is stable
if it is 1-stable in λ for some λ ≥ LS(K). We write “unstable” instead of “not
stable”.

Remark 2.10. If α < β, and K is β-stable in λ, then K is α-stable in λ.

The following follows from [Bona, Theorem 1.1].

Fact 2.11. Let λ ≥ LS(K). Let α be a cardinal. Assume K is stable in λ and
λα = λ. Then K is α-stable in λ.

3. Independence relations

In this section, we define independence relations, the main object of study of this
paper. We then consider two examples: coheir and nonsplitting.

3.1. Basic definitions.

Definition 3.1 (Independence relation). An independence relation ^ is a set of
triples of the form (A,M,N) where A is a set, M,N are models (i.e. M,N ∈ K),
M ≺ N . Write A^

M
N for (A,M,N) ∈ ^. When A = {a}, we may write a^

M
N

for A^
M
N . We require that ^ satisfies the following properties:

• (I) Invariance: Assume (A,M,N) ≡ (A′,M ′, N ′). Then A^
M
N if and only

if A′^
M ′
N ′.

• (M) Left and right monotonicity: If A^
M
N , A′ ⊆ A, M ≺ N ′ ≺ N , then

A′^
M
N ′.
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• (B) Base monotonicity: If A^
M
N , and M ≺M ′ ≺ N , then A^

M ′
N .

We write ^
M

for ^ restricted to the base set M , and similarly for e.g. A^
M

.

In what follows, ^ always denotes an independence relation.

Remark 3.2. To avoid relying on a monster model, we could introduce an ambient

model N̂ as a fourth parameter in the above definition (i.e. we would write A
N̂

^
M
N).

This would match the approach in [She09c] and [She09a] where the existence of

a monster model is not assumed. We would require that N̂ contains the other
parameters A, M and N . To avoid cluttering the notation, we will not adopt
this approach, but generalizing our results to this context should cause no major
difficulty. Some simple cases will be treated in the discussion of good frames in
Section 6.

We will consider the following properties of independence2:

• (C)κ Continuity: If A /̂
M

N , then there exists A− ⊆ A, B− ⊆ N of size

strictly less than κ such that for all N0 �M containing B−, A− /̂
M

N0.

• (T ) Left transitivity: If M1 ^
M0

N , and M2 ^
M1

N , with M0 ≺M1 ≺M2, then

M2 ^
M0

N .

• (T∗) Right transitivity: If A^
M0

M1, and A^
M1

M2, with M0 ≺ M1 ≺ M2,

then A^
M0

M2.

• (S) Symmetry: If A^
M
N , then there is M ′ � M with A ⊆ M ′ such that

N ^
M
M ′. If A is a model extending M , one can take M ′ = A 3.

• (U) Uniqueness: If A^
M
N , A′^

M
N , and f : A ≡M A′, then g : A ≡N A′

for some g so that g � A = f � A.
• (E) The following properties hold:

– (E0) Existence: for all A, A^
M
M .

– (E1) Extension: Given a set A, and M ≺ N ≺ N ′, if A^
M
N , then

there is A′ ≡N A such that A′^
M
N ′.

2Continuity, transitivity, uniqueness, existence and extension are adapted from [MS90]. Sym-
metry comes from [She09a].

3This second part actually follows from monotonicity and the first part.
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• (L) Local character: κα(^) < ∞ for all α, where κα(^) := min{λ ∈
REG ∪ {∞} : for all µ = cf µ ≥ λ, all increasing, continuous chains
〈Mi : i ≤ µ〉 and all sets A of size α, there is some i0 < µ so A ^

Mi0

Mµ}.

• (E+) Strong extension: A technical property used in the proof of canonicity.
See Definition 4.4.

For (P ) a property that is not local character, and M a model, when we say ^
has (P )M , we mean ^

M
has (P ) (i.e. ^ has (P ) when the base is restricted to be

M). If P is either (T ) or (T∗), (P )M means we assume M0 = M in the definition.

Whenever we are considering two independence relations
(1)

^ and
(2)

^, we write (P (1))

as a shorthand for “
(1)

^ has (P )”, and similarly for (P (2)).

Notice the following important consequence of (E):

Remark 3.3. Assume ^ has (E)M . Then for any A, and N � M , there is
A′ ≡M A such that A′^

M
N (use (E0)M to see A^

M
M , and then use (E1)M).

Assuming (T ∗)M , this last statement is actually equivalent to (E)M .

The property (E+) will be introduced and motivated later in the paper. For now,
we note that there is an asymmetry in our definition of an independence relation:
the parameter on the left is allowed to be an arbitrary set, while the parameter on
the right must be a model extending the base. This is because we have in mind
the analogy “a^

M
N if and only if tp(a/N) does not fork over M”, and in AECs,

types over models are much better behaved than types over sets.

The price to pay is that the statement of symmetry is not easy to work with. As-
sume for example we know an independence relation satisfies (T ) and (S). Should
it satisfy (T∗)? Surprisingly, this is not easy to show. We prove it in Lemma 5.9,
assuming (E). For now, we prepare the ground by showing how to extend an
independence relation to take arbitrary sets on the right hand side.

Definition 3.4 (Closure of an independence relation). We call
−
^ a closure of ^

if
−
^ is a relation defined on all triples of the form (A,M,B), where M is a model

(but maybe M 6⊆ B). We require it satisfies the following properties:

• For all A, and all M ≺ N , A^
M
N if and only if A

−
^
M
N .

• (I) Invariance: If (A,M,B) ≡ (A′,M ′, B′), then A
−
^
M
B if and only if

A′
−
^
M ′
B′.
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• (M) Left and right monotonicity: If A
−
^
M
B and A′ ⊆ A, B′ ⊆ B, then

A′
−
^
M
B′.

• (B) Base monotonicity: If A
−
^
M
B, and M ≺M ′ ⊆M ∪B, then A

−
^
M ′
B.

The minimal closure of ^ is the relation ^ defined by A^
M
C if and only if there

exists N �M , with C ⊆ N , so that A^
M
N .

It is straightforward to check that the minimal closure of ^ is the smallest closure
of ^ but there might be others (and they also sometimes turn out to be useful),
see the coheir and explicit nonsplitting examples below.

We can adapt the list of properties to a closure
−
^.

Definition 3.5.

• We say
−
^ has (S) if for all sets A,B, A

−
^
M
B if and only if B

−
^
M
A.

• We say that
−
^ has (C)κ if whenever A

−
/̂
M

B, there exists A− ⊆ A, B− ⊆ B

of size strictly less than κ such that A−
−
/̂
M

B−.

• We say that
−
^ has (E1) if whenever A

−
^
M
C, and C ⊆ C ′, there exists

A′ ≡MC A such that A′
−
^
M
C ′.

• We say that
−
^ has (U) if whenever A

−
^
M
C, A′

−
^
M
C, and f : A ≡M A′,

there is g : A ≡MC A
′ with g � A = f � A.

• We say that
−
^ has (T ) if whenever M0 ≺M1 ≺M2, M2

−
^
M1

C, and M1

−
^
M0

C,

we have M2

−
^
M0

C.

• The statements of (T∗), (E0), (L) are unchanged. We will not need to use
(E+) on a closure.

For an arbitrary closure, we cannot say much about the relationship between the

properties satisfied by ^ and those satisfied by
−
^. The situation is different for

the minimal closure, but we defer our analysis to section 5.

Remark 3.6. Another axiomatic approach are Shelah’s good λ-frames, introduced
in [She09a] building off of a framework introduced in [She01]. There are several
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key differences with our framework. In particular, good λ-frames only operate on
λ-sized models and singleton sets. On the other hand, the theory of good λ-frames
is very developed; see e.g. [She09a], [She09b], [JS12], and [JS13].

An earlier framework which is closer to our own is the “Existential framework”
AxFr3 (see [She09c, Definition 1.9]). The key differences are that AxFr3 only

defines M1

N̂

^
M
M2 when M ≺ M`, ` = 1, 2, AxFr3 (essentially) assumes (C)ℵ0 ,

while we seldom need continuity, and local character (a property crucial to our
canonicity proof) is absent from the axioms of AxFr3.

3.2. Examples. Though so far developed abstractly, this framework includes many
previously studied independence relations.

Definition 3.7 (Coheir, [BG]). Fix a cardinal κ > LS(K). We call a set small if
it is of size less than κ. For M ≺ N , define

A
(ch)

^
M
N ⇐⇒ for every small A− ⊆ A and N− ≺ N ,

there is B− ⊆M such that B− ≡N− A−.

One can readily check that
(ch)

^ satisfies the properties of an independence relation.
(ch)

^ was first studied in [BG], based on results of [MS90] and [Bonc], and gener-
alizes the first-order notion of coheir. An alternative name for this notion is < κ
satisfiability. Sufficient conditions for this relation to be well-behaved (i.e. to have
most of the properties listed above) are given in [BG].5.1., reproduced here as Fact
3.16.

Definition 3.8. We define a natural closure for
(ch)

^ :

A
(c̄h)

^
M
C ⇐⇒ for every small A− ⊆ A and C− ⊆ C,

there is B− ⊆M such that B− ≡C− A−.

It is straightforward to check that
(c̄h)

^ is indeed a closure of
(ch)

^ , but it is not clear
at all that this is the minimal one. This closure will be useful in the proof of

local character (Theorem 6.4) Note that
(c̄h)

^ differs from the notion of coheir given
in [MS90]; there, types are consistent sets of formulas from a fragment of Lκ,κ for
κ strongly compact and the notion there (see [MS90].4.5) allows parameters from
C and |M |.
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Definition 3.9 (µ-nonsplitting, [She99]). Let µ ≥ LS(K). For M ≺ N , we say

A
(µ-ns)

^
M

N if and only if for for all N1, N2 ∈ K≤µ with M ≺ N` ≺ N , ` = 1, 2, if

f : N1 ≡M N2, then there is g : N1 ≡AM N2 such that f � N1 = g � N1.

There is also a more general definition of nonsplitting that does not depend on a
cardinal µ.

Definition 3.10 (Nonsplitting). For M ≺ N ,

A
(ns)

^
M
N ⇐⇒ A

(µ-ns)

^
M

N for all µ.

An equivalent definition of nonsplitting is given by the following.

Proposition 3.11. A
(ns)

^
M
N if and only if for all N1, N2 ∈ K with M ≺ N` ≺ N ,

` = 1, 2, if h : N1 ≡M N2, then f : A ≡N2 h[A] for some f with f � A = h � A
(equivalently, ā ≡N2 h(ā) for all enumerations ā of A).

The analog statement also holds for µ-nonsplitting.

Proof. Assume h : N1 ≡M N2, and f : A ≡N2 h[A] is such that f � A = h � A
. Let g := f−1 ◦ h. Then g � N1 = h � N1, and g fixes AM . In other words,
g : N1 ≡AM N2 is as needed. Conversely, assume h : N1 ≡M N2. Find g : N1 ≡AM
N2 such that h � N1 = g � N1. Then f := h ◦ g−1 is the desired witness that
A ≡N2 h[A]. �

Using Proposition 3.11 to check base monotonicity, it is easy to see that both
(ns)

^

and
(µ-ns)

^ are independence relations. These notions of splitting in AECs were first
explored in [She99], but have seen a wide array of uses; see [SV99], [Van06] [Van13],
and [GVV] for examples. µ-nonsplitting is more common in the literature, but we
focus on nonsplitting here. Using tameness, there is a correspondence between the
two:

Proposition 3.12. Let M ≺ N and µ ≥ LS(K). If K is µ-tame for |A|-length
types and µ′ ∈ [µ, ‖N‖], then

A
(µ-ns)

^
M

N =⇒ A
(µ′-ns)

^
M

N

Proof. We use the equivalence given by Proposition 3.11. Let µ′ ∈ [µ, ||N ||], and

suppose A
(µ′-ns)

/̂
M

N . Then there are N` ∈ Kµ′ so M ≺ N` ≺ N for ` = 1, 2 and
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h : N1 ≡M N2, but ā 6≡N2 h(ā) for some enumeration ā of A. By tameness, there
is N−2 ∈ K≤µ so that ā 6≡N−2 h(ā). Without loss of generality, M ≺ N−2 . Let

N−1 := h−1[N−2 ]. Then N−1 and N−2 witness that A
(µ-ns)

/̂
M

N . �

A variant is explicit nonsplitting, which allows the Ni’s to be sets instead of requir-
ing models; this is based on explicit non-strong splitting from [She99, Definition
4.11.2].

Definition 3.13 (Explicit Nonsplitting). For M ≺ N , we say A
(nes)

^
M

N if and only

if for for all C1, C2 ⊆ N , if f : C1 ≡M C2, then there is g : C1 ≡AM C2 such that
f � C1 = g � C1.

From the definition, we see immediately that,
(nes)

^ ⊆
(ns)

^ . Of course, the corre-

sponding version of Proposition 3.11 also holds for
(nes)

^ , so it is again straightfor-

ward to check that
(nes)

^ is an independence relation. One advantage of using
(nes)

^

over
(ns)

^ is that it has a natural closure:

Definition 3.14. We say A
(nes)

^
M

C if and only if for for all C1, C2 ⊆ C, if f : C1 ≡M
C2, then there is g : C1 ≡AM C2 such that f � C1 = g � C1.

Again, it is not clear this is the minimal closure. We will have no use for this
closure, so for most of the paper we will stick with regular nonsplitting.

Nonsplitting will be used mostly as a technical tool to state and prove intermediate
lemmas, while coheir will be relevant only in Section 6.

3.3. Properties of coheir and nonsplitting. We now investigate the properties
satisfied by coheir and nonsplitting. Here is what holds in general:

Proposition 3.15. Let κ > LS(K).

(1)
(ch)

^ and
(c̄h)

^ have (C)κ, and (T ).

(2) If M is κ-saturated,
(ch)

^ and
(c̄h)

^ have (E0)M .

(3)
(ns)

^ ,
(nes)

^ , and
(nes)

^ have (E0).

Proof. Just check the definitions. �

While extension and uniqueness are usually considered very strong assumptions,
it is worth noting that nonsplitting satisfies a weak version of them, see [Van06,
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Theorems I.4.10, I.4.12]. It is also well known that nonsplitting has local character
assuming tameness and stability (see e.g. [GV06b, Fact 4.6]). This will not be used.

Regarding coheir, the following appears in [BG]:

Fact 3.16. Let κ > LS(K) be regular. Assume K is fully < κ-tame, fully < κ-type

short, has no weak < κ-order property4 and
(ch)

^ has (E)5.

Then
(ch)

^ has (U) and (S).

Moreover, if κ is strongly compact, then the tameness and type-shortness hypothe-

ses hold for free,
(ch)

^ has (E1), and “no weak < κ order property” is implied by
“∃λ > κ so I(λ,K) < 2λ.”

As we will see, right transitivity (T∗) can be deduced either from symmetry and
(T ) (Lemma 5.9) or from uniqueness (Lemma 5.11). Local character will be shown
to follow from symmetry (Theorem 6.4).

4. Comparing two independence relations

In this section, we prove the main result of this paper (canonicity of forking), mod-
ulo some extra hypotheses that will be eliminated in Section 5. After discussing
some preliminary lemmas, we introduce a strengthening of the extension property,
(E+), which plays a crucial role in the proof. We then prove canonicity using
(E+) (Corollary 4.8). Finally, we show (E+) follows from some of the more clas-
sical properties that we had previously introduced (Corollary 4.13), obtaining the
main result of this section (Corollary 4.14). We conclude by giving some examples
showing our hypotheses are close to optimal.

For the rest of this section, we fix two independence relations
(1)

^ and
(2)

^. Recall
from Definition 3.1 that this means they satisfy (I), (M) and (B). We aim to

show that if
(1)

^ and
(2)

^ satisfy enough of the properties introduced in Section 3,

then
(1)

^ =
(2)

^.

The first easy observation is that given some uniqueness, only one direction is
necessary:

Lemma 4.1. Let M be a model. Assume:

(1)
(1)

^
M
⊆

(2)

^
M

4See [BG, Definition 4.2].
5All the properties mentioned in this Lemma are valid for models of size ≥ κ only.
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(2) (E(1))M , (U
(2))M

Then
(1)

^
M

=
(2)

^
M

.

Proof. Assume A
(2)

^
M
N . By (E(1))M , find A′ ≡M A so that A′

(1)

^
M
N . By hypothesis

(1), A′
(2)

^
M
N . By (U (2))M , A′ ≡N A. By (I(1))M , A

(1)

^
M
N . �

With a similar idea, one can relate an arbitrary independence relation to nonsplit-
ting:

Lemma 4.2. Assume (U)M . Then ^
M
⊆

(ns)

^
M

.

Proof. Assume A^
M
N . Let M ≺ N1, N2 ≺ N and h : N1 ≡M N2. By mono-

tonicity, A^
M
N` for ` = 1, 2. By invariance, h[A]^

M
N2. By (U)M , there is

f : A ≡N2 h[A] with f � A = h � A. By Proposition 3.11, A
(ns)

^
M
N . �

A similar result holds for
(nes)

^ , see Lemma 5.6.

The following consequence of invariance will be used repeatedly:

Lemma 4.3. Assume ^ satisfies (E1)M . Assume A^
M
N , and N ′ � N . Then

there is N ′′ ≡N N ′ such that A^
M
N ′′.

Proof. By (E1)M , there is f : A′ ≡N A, A′^
M
N ′. Thus f : (A′, N ′) ≡N (A, f [N ′]),

so letting N ′′ := f [N ′] and applying invariance, we obtain A^
M
N ′′. �

Even though we will not use it, we note that an analogous result holds for left
extension, see Lemma 5.8.

We now would like to strengthen Lemma 4.3 as follows: suppose we are given A,
M ≺ N0 ≺ N , and assume N is “very big” (e.g. it is (2|A|+||N0||)+-saturated), but
does not contain A. Can we find N ′0 ≡M N0 with A^

M
N ′0, and N ′0 ≺ N?

We give this property a name:

Definition 4.4 (Strong extension). An independence relation ^ has (E+) (strong
extension) if for any M ≺ N0 and any set A, there is N � N0 such that for all
N ′ ≡N0 N , there is N ′0 ≡M N0 with A^

M
N ′0 and N ′0 ≺ N ′.
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Intuitively, (E+) says that no matter which isomorphic copy N ′ of N we pick, even
if N ′ does not contain A, N ′ is so big that we can still find N ′0 inside N ′ with the
right property. This is stronger than (E) in the following sense:

Proposition 4.5. If ^ has (E+), ^ has (E0). If in addition ^ has (T∗), then ^
has (E1). Thus if ^ has (E+) and (T∗), it has (E).

Proof. Use monotonicity and Remark 3.3. �

Remark 4.6. Example 4.16 shows (E+) does not follow from (E).

Strong extension allows us to prove canonicity:

Lemma 4.7. Assume (E
(1)
1 )M , (E

(2)
+ )M . Assume also that

(1)

^
M
⊆

(ns)

^
M

.

Then
(1)

^
M
⊆

(2)

^
M

.

Proof. Assume A
(1)

^
M
N0. We show A

(2)

^
M
N0. Fix N � N0 as described by (E

(2)
+ )M .

By Lemma 4.3, we can find N ′ ≡N0 N such that A
(1)

^
M
N ′. By definition of N , one

can pick N ′0 ≡M N0 with N ′0 ≺ N ′ and A
(2)

^
M
N ′0.

We have A
(ns)

^
M
N ′, M ≺ N ′0, N0 ≺ N ′, and N ′0 ≡M N0, so by definition of nonsplit-

ting, N ′0 ≡AM N0. By invariance, A
(2)

^
M
N0, as needed. �

Corollary 4.8 (Canonicity of forking from strong extension). Assume:

• (U (1))M , (E
(1))M .

• (U (2))M , (E
(2)
+ )M .

Then
(1)

^
M

=
(2)

^
M

.

Proof. By Lemma 4.1, it is enough to see
(1)

^
M
⊆

(2)

^
M

. By Lemma 4.2,
(1)

^
M
⊆

(ns)

^
M

. The

result now follows from Lemma 4.7. �

We now proceed to show that (E+) follows from (E), (T∗), (S) and (L). We will
use the following important concept:
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Definition 4.9 (Independent sequence). Let I be a linearly ordered set. A se-
quence of sets (Ai)i∈I is independent over a model M if there is a strictly increasing
continuous chain of models (Ni)i∈I such that for all i ∈ I:

(1) M ∪
⋃
j<iAj ⊆ Ni and N0 = M .

(2) Ai^
M
Ni.

This generalizes the notion of independent sequence from the first-order case. The

most natural definition would only require Ai
−
^
M

⋃
j<iAj (for some closure

−
^ of ^)

but it turns out it is convenient to have a sequence of models (Ni)i∈I witnessing
the independence in a uniform way.

We note that a very similar definition appears in [JS12, Definition 3.2], or in
Section 5 of [She09b].

Just like in the first-order case, the extension property allows us to build indepen-
dent sequences:

Lemma 4.10 (Existence of independent sequences). Assume (E)M . Let A be a
set, and let δ be an ordinal. Then there is a sequence (Ai)i<δ independent over M
so that Ai ≡M A for all i < δ, and A0 = A.

Proof. Define the (Ai)i<δ and the (Ni)i<δ witnessing the independence of the se-
quence by induction on i < δ. Take N0 = M and A0 = A. Assume inductively
(Aj)j<i, (Nj)j<i have been defined. If i is a limit, let Ni :=

⋃
j<iNj. If i is a suc-

cessor, let Ni be any model containing M ∪
⋃
j<i(Aj ∪Nj) and strictly extending

the previous Njs. By (E)M , there is Ai ≡M A such that Ai^
M
Ni. Thus (Ai)i<δ is

as desired.

�

The next result is key to the proof of (E+). It is adapted from [Bal88, Theorem
II.2.18].

Lemma 4.11. Assume^ has (S), (T∗)M , (L). LetA be a set, and let µ := κ|A|(^).
Then whenever (Mi)i<µ is an independent sequence over M with M ≺ Mi for all
i, there is i < µ with A^

M
Mi.

Proof. Let (Ni)i<µ witness independence of the Mi’s. Let Nµ :=
⋃
i<µNi. By

definition of µ, there is i < µ so that A^
Ni

Nµ. By (S), there is a model NA

with Ni ≺ NA, A ⊆ NA, and Nµ^
Ni

NA. By (M), Mi^
Ni

NA. Since the Mis are
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independent, we also have Mi^
M
Ni. By (T∗)M , Mi^

M
NA. By (S) (recall that

M ≺Mi), NA^
M
Mi. By (M), A^

M
Mi, as desired. �

Remark 4.12. The same proof works if we replace ^ by its minimal closure ^,
and (Mi)i<µ by an arbitrary sequence (Bi)i<µ independent over M .

Corollary 4.13. Assume (E)M , (S), (T∗)M , and (L). Then (E+)M .

Proof. Fix A and N0 �M . Let µ := κ|A|(^). By Lemma 4.10, there is a sequence
(Mi)i<µ independent over M such that Mi ≡M N0 for all i < µ, and M0 = N0. Let
(N ′i)i<µ witness independence of the Mi’s. We claim N :=

⋃
i<µN

′
i is as required.

By construction, N0 = M0 ≺ N .

Now let f : N ≡N0 N ′. Let M ′
i := f [Mi]. Invariance implies (M ′

i)i<µ is an
independent sequence over M inside N ′, with M ′

i ≡M N0 for all i < µ. By Lemma
4.11, there is i < µ so that A^

M
M ′

i , so N ′0 := M ′
i is exactly as needed. �

Corollary 4.14. Assume:

• (E(1))M , (U
(1))M .

• (E(2))M , (U
(2))M , (L), (S(2)), (T

(2)
∗ )M .

Then
(1)

^
M

=
(2)

^
M

.

Proof. Combine Corollaries 4.8 and 4.13. �

Remark 4.15. Corollary 5.17 shows that (S) and (T∗) follow from (E), (U), and
(L).

Next, we argue the other hypotheses are necessary. The following example (ver-
sions of which appears at various places in the literature, e.g. [She09a, Example
6.4], [Adl09a, Example 6.6]) shows we cannot remove the local character assump-
tion from Corollary 4.14. In particular, (E+) does not follow from (E) and (U)
alone. The example also shows the AxFr3 framework (see [She09c, Definition 1.9])
is not canonical.

Example 4.16. Let Tind be the first-order theory of the random graph, and let
K be the class of models of Tind, ordered by first-order elementary substructure.
Define

• A
(1)

^
M
N iff A ∩N ⊆M , and there are no edges between A\M and N\M .

• A
(2)

^
M
N iff A ∩N ⊆M , and all the possible cross edges between A\M and

N\M are present.
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It is routine to check that both
(1)

^ and
(2)

^ are independence relations with (E),

(U), (S), (T ), (T∗), (C)ℵ0 . Yet
(1)

^ 6=
(2)

^, so one knows from Corollary 4.14 (or
from first-order stability theory) that K can have no independence relation which
in addition has (L) or (E+).

Of course, Tind is simple, so first-order nonforking will actually have (E+), local
character, transitivity and symmetry (but not uniqueness).

A concrete reason (E+) does not hold e.g. for
(1)

^ is that given M ≺ N0 one can
pick a 6∈ N0 such that there is an edge from a to any element of N0. Then for
any N � N0, one can again pick N ′ ≡N0 N , disjoint from {a} ∪ (N\N0) such that

there is an edge from a to any element of N ′. Then a
(1)

^
M
N ′0 for N ′0 ≺ N implies

N ′0 = M . Local character fails for a similar reason.

Example 4.17. It is also easy to see that (E(2)) and (U (2)) are necessary in

Corollary 4.14. Assume
(1)

^ has (E), (U), (S), (T∗), and (L). Then the independence

relation
(2)

^ defined by A
(2)

^
M
N for all A and M ≺ N satisfies (E), (S), (T∗), (L), but

not (U), so is distinct from
(1)

^.

Similarly define A
(2)

^
M
N if and only if M ≺ N and either both A

(1)

^
M
N and ||M || ≥

LS(K)+, or M = N . Then
(2)

^ has (E0), (U), (S), (T∗) and (L), but does not have
(E1)M if M is a model of size LS(K). This last example was adapted from [Adl09a,
Example 6.4].

5. Relationship between various properties

In this section, we investigate some of relations between the properties introduced
earlier. We first discuss the interaction between properties of an independence
relation and properties of its closures, and show how to obtain transitivity from
various other properties. We then show how to obtain symmetry from existence,
extension, uniqueness, and local character (Corollary 5.17). This second part has
a stability-theoretic flavor and most of it does not depend on the first part.

Most of the material in the first part of this section is not used in the rest of
the paper, but the concept of closure (Definition 3.4) felt unmotivated without it.
Our investigation remains far from exhaustive, and leaves a lot of room for further
work.
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5.1. Properties of the minimal closure. Recall the notion of closure of an in-
dependence relation (Definition 3.4). We would like to know when we can transfer
properties from an independence relation to its closures and vice-versa.

For an arbitrary closure, we can say little:

Lemma 5.1. Let
−
^ be a closure of ^. Then:

(1) A property in the following list holds for ^ if and only if it holds for
−
^:

(T∗)M , (E0)M , (L).

(2) If a property in the following list holds for
−
^, then it holds for ^: (C)κ,

(T )M , (E1)M , (U)M .

Proof.

(1) Because those properties have the same definition for ^ and
−
^.

(2) Straightforward from the definitions.

�

The minimal closure is more interesting. We start by generalizing Lemma 4.3:

Lemma 5.2. Assume ^ satisfies (E1)M . Let
−
^ be the minimal closure of ^.

Assume A
−
^
M
C, and let B be an arbitrary set. Then there is B′ ≡MC B such that

A
−
^
M
B′.

Proof. Let N be a model containing C and M such that A^
M
N . Let N ′ be a

model containing NB. By Theorem 4.3, there is N ′′ ≡N N ′ such that A^
M
N ′′.

Now use monotonicity to get the result. �

The next lemma tells us that the minimal closure is the only one that will keep
the extension property:

Lemma 5.3. Let
−
^ be a closure of ^ and let ^ be the minimal closure of ^.

Assume ^ has (E1)M . Then
−
^
M

= ^
M

if and only if
−
^ has (E1)M .

Proof. Assume first
−
^
M

= ^
M

. Let C ⊆ C ′, and assume A
−
^
M
C. Then by definition

of the minimal closure, there exists N � M containing C such that A^
M
N . Let
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N ′ be a model containing N and C ′. By (E1)M for ^, there is A′ ≡N A so that

A′^
M
N ′. By monotonicity, A′

−
^
M
C ′, and since N contains C, A′

−
^
M
C.

Conversely, assume
−
^
M

has (E1)M . We know already that ^ ⊆
−
^, so assume

A
−
^
M
C. Let N be a model containing M and C. By Lemma 5.2, there is N ′ ≡MC N

so that A
−
^
M
N ′, so A^

M
C, as needed. �

Lemma 5.4. Let
−
^ be the minimal closure of ^. Then

(1) (E)M holds for ^ if and only if it holds for
−
^.

(2) (S)M holds for ^ if and only if it holds for
−
^.

(3) If ^ has (E)M , then it has (U)M if and only if
−
^ does.

(4) If ^ has (E), then it has (T ) if and only if
−
^ does6.

Proof.

(1) By Lemmas 5.1 and 5.3.
(2) Straightforward from the definition of symmetry and monotonicity.

(3) One direction holds by Lemma 5.1. For the other direction, assume
−
^ has

(E1)M and ^ has (U)M . Assume A
−
^
M
C and A′

−
^
M
C, with f : A ≡M A′.

Let N be a model containing MC such that A^
M
N . By extension again,

find h : A′ ≡MC A
′′ such that A′′^

M
N . We know h′ := h ◦ f : A ≡M A′′, so

by uniqueness, there is h′′ : A ≡N ′ A′′, and h′′ � A = h′ � A = (h ◦ f) � A,
so f � A = (h−1 ◦ h′′) � A. Therefore g := h−1 ◦ h′′ is the desired witness
that A ≡MC A

′.

(4) Let M0 ≺M1 ≺M2, and assume M1

−
^
M0

C, M2

−
^
M1

C. Let N be an extension

of M1 containing C such that M2

−
^
M1

N . Let χ be a big cardinal, so that

(Vχ,∈) reflects enough set theory and contains NM2. Let N ′ be what Vχ
believes is the monster model.

6More precisely, if ^ has (E)M1
, and for M0 ≺ M1 ≺ M2, we have that M2^

M1

N , M1^
M0

N

implies M2^
M0

N , then M2

−

^
M1

C, M1

−

^
M0

C implies M2

−

^
M0

C.
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By Lemma 4.3, there is f : N ′′ ≡N N ′ such that M2 ^
M1

N ′′. Notice

that CM1 ⊆ N ⊆ N ′, so since we took χ big enough, we can apply the
definition of the minimal closure inside Vχ to get N ′0 ≺ N ′ containing M0

and C so that M1 ^
M0

N ′0. Let N0 := f [N ′0]. By invariance, M1 ^
M0

N0, and

N0 ≺ N ′′, so by monotonicity, M2 ^
M1

N0, so by (T )M0 for ^, M2 ^
M0

N0. By

monotonicity again, M2

−
^
M0

C.

�

The following remains to be investigated:

Question 5.5. Let
−
^ be the minimal closure of ^. Under what conditions does

(C)κ for ^ imply (C)κ for
−
^?

We can use Lemma 5.4 to prove a variation on Lemma 4.2.

Lemma 5.6. Assume ^ has (E)M and (U)M . Then ^
M
⊆

(nes)

^
M

.

Proof. Let
−
^ be the minimal closure of ^. By Lemma 5.4,

−
^ has (E)M and

(U)M .

Assume A^
M
N . Let C1, C2 ⊆ N , and h : C1 ≡M C2. By monotonicity, A^

M
C`

for ` = 1, 2. By invariance, h[A]^
M
C2. By (U)M , there is f : A ≡MC2 h[A] with

f � A = h � A. By (the proof of) Proposition 3.11, A
(nes)

^
M

N . �

Question 5.7. Is the (E)M hypothesis necessary?

We can also obtain a left version of Lemma 4.3:

Lemma 5.8. Let
−
^ be a closure of ^. Assume ^ has (E)N , and

−
^ has (T )M1 .

Suppose that N ^
M1

M2, with N �M1. Then for all N ′ � N , there exists N ′′ ≡N N ′

such that N ′′^
M1

M2.

In particular, this holds if ^ has (E) and (T ).

Proof. The last line follows from part (4) of Lemma 5.4 by taking
−
^ to be the

minimal closure of ^.
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To see the rest, let N3 be a model containing M2N . By (E)N , there is N ′′ ≡N N ′

such that N ′′^
N
N3. Since M2 ⊆ N3, N ′′

−
^
N
M2. By hypothesis, N

−
^
M1

M2. So since

−
^ has (T )M1 , N

′′
−
^
M1

M2. Since M2 �M1, N ′′^
M1

M2. �

Finally, we can also use symmetry to translate between the transitivity properties:

Lemma 5.9. Assume ^ has (S). Then:

(1) If ^ has (T∗)M0 , then ^ has (T )M0 .
(2) If ^ has (T )M0 and (E), then it has (T∗)M0 .

Proof. Let M0 ≺ M1 ≺ M2. Let
−
^ be the minimal closure of ^. By Lemma 5.4,

−
^ has (S).

(1) By Lemma 5.1,
−
^ has (T∗)M0 . Now use symmetry.

(2) By part (4) of Lemma 5.4,
−
^ has (T )M0 . Now use symmetry.

�

This gives us one way to obtain right transitivity for coheir:

Corollary 5.10. Assume
(ch)

^ has (S) and (E). Then
(ch)

^ has (T∗).

Proof. By Proposition 3.15,
(ch)

^ has (T ). Apply Lemma 5.9. �

Another way to obtain right transitivity from other properties appears in [She09a,
Claim 2.18]:

Lemma 5.11. Assume ^ has (E1)M and (U). Then ^ has (T∗)M .

Proof. Let M0 ≺ M1 ≺ M2, and assume A^
M0

M1 and A^
M1

M2. By (E1)M , there

exists A′ ≡M1 A such that A′^
M0

M2. By base monotonicity, A′^
M1

M2. By unique-

ness, A ≡M2 A
′. By invariance, A^

M0

M2. �

5.2. Getting symmetry. We prove that symmetry follows from (E), uniqueness
and local character and deduce the main theorem of this paper (Corollary 5.18).
We start by assuming some stability. The following is a strengthening of unstability
that is sometimes more convenient to work with:
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Definition 5.12. Let α and λ be cardinals. K has the α-order property of length
λ if there is a sequence (āi)i<λ of tuples, with `(āi) = α, so that for any i0 < j0 < λ
and i1 < j1 < λ, āi0 āj0 6≡ āj1 āi1 .

K has the α-order property if it has the α-order property of all lengths.

K has the order property if it has the α-order property for some cardinal α.

This is a variation on the order property defined in [She99] taken from [GV06b].
It is stronger than unstability:

Fact 5.13. Let α be a cardinal. If K has the α-order property, then K is α-
unstable.

Proof sketch. This is [She99, Claim 4.7.2]. Shelah’s proof is “Straight.”, so we
elaborate a little.

Let λ ≥ LS(K). We show K is α-unstable in λ. Let I ⊆ Î be linear orderings

such that ||I|| ≤ λ, ||Î|| > λ, and I is dense in Î. Combining Shelah’s presentation

theorem with Morley’s method, we can get a sequence Î :=
〈
āi | i ∈ Î

〉
with

`(āi) = α and i0 < j0, i1 < j1 implies āi0 āj0 6≡ āj1 āi1 . Let I := 〈āi | i ∈ I〉.

Now for any i < j in Î, āi 6≡I āj. Indeed, pick i < k < j with k ∈ I. Then
āiāk 6≡ āj āk by construction, so āi 6≡āk āj. This completes the proof that K is
α-unstable in λ. �

We are now ready to prove symmetry. The argument is similar to [She90, Theorem
III.4.13] or [She75, Theorem 5.1].

Theorem 5.14 (Symmetry). Assume ^ has (E)M and ^
M
⊆

(nes)

^
M

. Assume in

addition that K does not have the order property. Then ^ has (S)M .

Proof. Let
−
^ be the minimal closure of ^. Recall that by Lemma 5.4, ^ has

(S)M if and only if
−
^ has (S)M .

Assume for a contradiction ^ does not have (S)M . Pick A and M ≺ N such that

A^
M
N , but N

−
/̂
M

A. Let λ be an arbitrary uncountable cardinal. We will show

that K has the (||N || + |A|)-order property of length λ. This will contradict the
assumption that K does not have the order property.

We will build increasing continuous 〈Mα ∈ K : α < λ〉, and 〈Aα,M ′
α, Nα : α < λ〉

by induction so

(1) M0 � N and A ⊆ |M0|.
(2) Nα ≡M N and Nα ≺M ′

α.
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(3) Aα ≡N A and Aα ⊆Mα+1.
(4) Mα ≺M ′

α ≺Mα+1.
(5) Nα^

M
Mα and Aα^

M
M ′

α.

This is possible. Let M0 be any model containing AN . At α limits, let Mα :=⋃
β<αMβ. Now assume inductively that Mβ has been defined for β ≤ α, and Aβ,

Nβ, M ′
β have been defined for β < α. Use (E)M to find Nα ≡M N with Nα^

M
Mα.

Now pick M ′
α ≥ Mα containing Nα. Now, by (E)M again, find Aα ≡N A with

Aα^
M
M ′

α. Pick Mα+1 �Mα containing Aα and M ′
α.

This is enough. We show that for α, β < λ:

(1) If β < α, (A,N) 6≡M (Aβ, Nα).
(2) If β ≥ α, (A,N) ≡M (Aβ, Nα).

For (1), suppose β < α. Since A ⊆ M ≺ Mα, we have Nα

−
^
M
A. Then we can use

the invariance of
−
^ and the assumption of no symmetry to conclude (A,Nα) 6≡M

(A,N). On the other hand, we know that Nα

(nes)

^
M

Mα. Since A,Aβ ⊆ Mα and

A ≡M Aβ, we must have (A,Nα) ≡M (Aβ, Nα). Thus (A,N) 6≡M (Aβ, Nα).

To see (2), suppose β ≥ α and recall that (A,N) ≡M (Aβ, N). We also have that

Aβ
(nes)

^
M

M ′
β. N ≡M Nα and N,Nα ⊆ M ′

β, the definition of non explicit splitting

implies that (Aβ, N) ≡M (Aβ, Nα). This gives us that (A,N) ≡M (Aβ, Nα) as
desired.

�

Corollary 5.15. Assume K does not have the order property. Assume ^ has
(E)M and (U)M . Then ^ has (S)M .

Proof. By Lemma 5.6, ^
M
⊆

(nes)

^
M

. Now apply Theorem 5.14. �

If in addition we assume local character, we obtain the “no order property” hy-
pothesis:

Lemma 5.16. Assume ^ has (U) and (L) (or just κ1(^) < ∞). Then K is
α-stable for all α. In particular, it does not have the order property.

Proof. That α-stability implies no α-order property is the contrapositive of Fact
5.13. Now, assume (U) and let µ := κ1(^) <∞. Fix a cardinal α ≥ 1. We want
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to see K is α-stable. By Remark 2.10, we can assume without loss of generality
α ≥ µ+ LS(K).

Let λ := iα+ . Then:

(1) λ is strong limit.
(2) cf (λ) = α+ > µ+ LS(K).
(3) λα = supγ<λ γ

α = λ.

We claim that K is α-stable in λ. By Fact 2.11, it is enough to see it is 1-stable
in λ. Suppose not. Then there exists M ∈ Kλ, and {ai}i<λ+ such that i < j
implies ai 6≡M aj. Let (Mi)i<λ be increasing continuous such that M =

⋃
i<λMi

and ||Mi|| < λ. By definition of µ, for each i < λ+, there exists ki < λ such that
ai ^

Mki

M . By the pigeonhole principle, we can shrink {ai}i<λ+ to assume without

loss of generality that ki = k0 for all i < λ+. Since there are at most 2||Mk0
|| < λ

many types over Mk0 , there exists i < j < λ+ such that ai ≡Mk0
aj. By uniqueness,

ai ≡M aj, a contradiction. �

Corollary 5.17. Assume ^ has (E)M , (U) and (L) (or just κ1(^) <∞). Then

^ has (S)M and (T∗)M .

Proof. Lemma 5.11 gives (T∗)M . Combine Lemma 5.16 and Corollary 5.15 to
obtain (S)M . �

Thus we obtain another version of the canonicity theorem:

Corollary 5.18 (Canonicity of forking). Let
(1)

^ and
(2)

^ be independence relations.
Assume:

• (E(1))M , (U
(1))M .

• (E(2))M , (U
(2)), (L).

Then
(1)

^
M

=
(2)

^
M

.

In particular, there can be at most one independence relation satisfying existence,
extension, uniqueness, and local character.

Proof. Combine Corollaries 4.14 and 5.17. �

6. Applications

6.1. Canonicity of coheir. Fix a regular κ > LS(K). Below, when we say coheir
has a given property, we mean that it has that property for base models in K≥κ.
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We are almost ready to show that coheir is canonical, but we first need to show
it has local character. We will use the following strengthening that deals with
subsets instead of chains of models:

Definition 6.1. Let ^ be an independence relation. For α a cardinal, let κ̄α =
κ̄α(^) be the smallest cardinal such that for all N , and all A with |A| = α, there
exists M ≤ N with ||M || < κ̄α and A^

M
N . κ̄α =∞ if there is no such cardinal.

Remark 6.2. For all α, κα(^) ≤ κ̄α(^)+. Thus κ̄α(^) <∞ implies κα(^) <∞.

Question 6.3. Is the converse true? Namely, does κα(^) < ∞ imply κ̄α(^) <
∞?

Theorem 6.4 (Local character for coheir). Assume
(ch)

^ has (S). Let λ be κ if κ

is regular, or κ+ otherwise. Then κ̄α(
(ch)

^ ) ≤ (α<κ)+ + (κ<λ)+. In particular,
(ch)

^
has (L).

The proof is similar to that of [Adl09b, Theorem 1.6]. The key is that
(c̄h)

^ always
satisfies a dual to local character:

Lemma 6.5. Let N,C be given. Then there is M ≤ N , ||M || ≤ (|C| + 2)<κ +

LS(K) such that N
(c̄h)

^
M
C.

Proof sketch. For each of the |C|<κ small subsets of C, look at the ≤ 2<κ small
types over that set (realized inN), and collect a realization of each in a set A ⊆ |N |.
Then pick M ≺ N to contain A and be of the appropriate size. �

We will also use the following application of the fact
(c̄h)

^ has (C)κ and a strong
form of base monotonicity.

Lemma 6.6. Let λ be such that cf λ ≥ κ. Let (Ai)i<λ, (Mi)i<λ, (Ci)i<λ be

(not necessarily strictly) increasing chains. Assume Ai
(c̄h)

^
Mi

Ci for all i < λ. Let

Aλ :=
⋃
i<λAi, and define Mλ, Cλ similarly. Then Aλ

(c̄h)

^
Mλ

Cλ.

Proof. From the definition of
(c̄h)

^ , we see that for all i < λ, Ai
(c̄h)

^
Mλ

Ci. Now use the

fact that
(c̄h)

^ has (C)κ (Proposition 3.15). �
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Proof of Theorem 6.4. Replacing κ by κ+ if necessary, we can assume without loss
of generality κ is regular, i.e. λ = κ. Fix α, and let A and N be given with |A| = α.
Let µ := (|A|+2)<κ. Inductively build (Mi)i≤κ, (Ni)i≤κ increasing continuous such
that for all i < κ:

(1) A ⊆ Ni.
(2) Mi ≺ N , ||Mi|| ≤ µ.
(3) Mi ≺ Ni+1.

(4) N
(c̄h)

^
Mi+1

Ni+1.

This is enough: By Lemma 6.6, N
(c̄h)

^
Mκ

Nκ. Moreover, by (2), (3) and the chain

axioms, Mκ ≺ Nκ, N , and by (2) (note µ ≥ 2<κ ≥ κ), ||Mκ|| ≤ µ. Thus N
(ch)

^
Mκ

Nκ,

and one can apply (S) to get Nκ

(ch)

^
Mκ

N . By monotonicity, A
(ch)

^
Mκ

N , exactly as

needed.

This is possible: Pick any A ⊆ N0 with ||N0|| ≤ µ (this is possible since µ ≥
|A| + κ > LS(K)). Now, given i non-limit, (Nj)j≤i and (Mj)j<i, use Lemma 6.5

to find Mi ≺ N , ||Mi|| ≤ (||Ni||)<κ ≤ µ, such that N
(c̄h)

^
Mi

Ni. Then pick any Ni+1

extending both Mi and Ni, with ||Ni+1|| ≤ µ.

�

We finally have all the machinery to prove:

Theorem 6.7 (Canonicity of coheir). Assume K is fully < κ-tame, fully < κ-type
short, and has no weak < κ-order property7.

Assume
(ch)

^ has (E). Then:

(1)
(ch)

^ has (C)κ, (T ), (T∗), (S), (U), and (L).

(2) Any independence relation satisfying (E) and (U) must be
(ch)

^ (for base
models in K≥κ).

Proof. By Proposition 3.15,
(ch)

^ has (C)κ and (T ). By Fact 3.16,
(ch)

^ has (U) and

(S). By Corollary 5.10 (or Lemma 5.11),
(ch)

^ also has (T∗). By Theorem 6.4,
(ch)

^
has (L). This takes care of (1). (2) follows from (1) and Corollary 4.14. �

7See [BG, Definition 4.2].
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Corollary 6.8 (Canonicity of coheir, assuming a strongly compact). Assume κ is
strongly compact, all models in K≥κ are κ-saturated, and there exists λ > κ such
that I(λ,K) < 2λ. Then:

(1)
(ch)

^ has (E), (C)κ, (T ), (T∗), (S), (U), and (L).

(2) Any independence relation satisfying (E) and (U) must be
(ch)

^ (for base
models in K≥κ).

Proof. By Proposition 3.15,
(ch)

^ has (E0). Thus by the moreover part of Fact 3.16,
(ch)

^ has (E). Now apply Theorem 6.7. �

6.2. Canonicity of good frames. As has already been noted, the framework
AxFri3 defined in [She09c] is a precursor to our own, but Example 4.16 shows
it is not canonical. Shelah also investigated an extension of AxFri3 axiomatizing
primeness (the “primal framework”) but it is outside the scope of this paper.

We will however briefly discuss the canonicity of good frames. Good frames were
first defined in [She09a]. We will assume the reader is familiar with their definition
and basic properties. As already noted, the main difference with our framework
is that a good frame is local: For a fixed λ ≥ LS(K), a good λ-frame assumes the

existence of a nice independence relation ^ where only a
N̂

^
M
N is defined, for a an

element of N̂ and M ≺ N ≺ N̂ models of size λ.

In [She09a, Section 6], Shelah shows that, assuming a technical condition (that
the frame is weakly successful), one can extend it uniquely to a non-forking frame:

basically an independence relation ^ where M1

N̂

^
M
M2 is defined for M ≺M` ≺ N̂

in Kλ, ` = 1, 2. For the rest of this section, we fix λ ≥ LS(K) and we do not
assume the existence of a monster model (Hypothesis 2.1). Recall however that
the definition of a good frame implies Kλ has some nice properties, i.e. it has
amalgamation, joint embedding, no maximal model, is stable8 in λ, and has a
superlimit model.

Fact 6.9. If s is a weakly successful good λ-frame, then it extends uniquely to a
non-forking frame (i.e. using Shelah’s terminology, there is a unique non-forking
frame NF that respects s).

Proof. Uniqueness is [She09a, Claim 6.3] and existence is [She09a, Conclusion 6.34].
�

8Really only stable for basic types, but full stability follows (see [She09a, Claim 4.2.1]).
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As Shelah observed, Example 4.16 shows that a non-forking frame by itself need
not be unique: we need to know it comes from a good frame, or at least that there
is a good frame around. Shelah showed:

Fact 6.10. Assume that s is a good+ λ-frame and NF is a non-forking frame, both
with underlying AEC K. Then NF respects s.

Proof. See [She09a, Claim 6.7]. �

Here, good+ is a technical condition asking for slightly more than just the original
axioms of a good frame.

We also have that a non-forking frame induces a good frame:

Fact 6.11. Assume Kλ has a superlimit, is stable in λ, and carries a non-forking
frame NF (so in particular it has amalgamation) with independence relation (de-

fined for models in Kλ) ^. Then the relation a
N̂

^
M
N holds iff there is N̂ ′ � N̂ and

M ≺M ′ ≺ N̂ ′ with a ∈M ′ so that M ′
N̂ ′

^
M
N defines a type-full (i.e. the basic types

are all the nonalgebraic types) good λ-frame t. If in addition NF comes from a
type-full weakly successful good λ-frame s, then s = t.

Proof. See [She09a, Claim 6.36]. �

Thus we obtain the following canonicity result:

Corollary 6.12. Assume that s1 is a weakly successful good+ λ-frame and s2 is a
weakly successful good λ-frame in the same underlying AEC K. Assume further
s1 and s2 are type-full (i.e. their basic types are all the nonalgebraic types). Then
s1 = s2.

Proof. Using Fact 6.9, let NF` be the non-forking frame extending s` for ` = 1, 2.
By Fact 6.10, NF2 respects s1, so NF1 = NF2. By Fact 6.11 (the existence of a
good frame implies the stability and superlimit hypotheses), we must also have
s1 = s2. �

The methods of this paper can show slightly more: We can get rid of the good+:

Theorem 6.13 (Canonicity of good frames). Let s1, s2 be weakly successful good
λ-frames with underlying AEC K and the same basic types. Then s1 = s2.

Proof sketch. Using Fact 6.9, let NF` be the non-forking frame extending s` for

` = 1, 2. Let
(1)

^,
(2)

^ be the independence relations (for models in Kλ) associated to
NF1, NF2 respectively. By Fact 6.11, one can extend their domain to allow a single
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element on the left hand side. Thus without loss of generality we may assume s1

and s2 are type-full. Let M ≺ N ≺ N̂ and let a ∈ N̂ . Assume a
(1),N̂

^
M

N0. We

show a
(2),N̂

^
M

N0. The symmetric proof will show the converse is true, and hence

that s1 = s2.

First observe that stability, amalgamation, joint embedding and no maximal model
in λ implies we can build a saturated (hence model-homogeneous) model M of
size λ+. Since (as we will show) the argument below only uses objects of size λ,
we can take M to be our monster model for this argument (i.e. we assume any

set we consider comes from M). Then we have a
(1),N̂

^
M

N0 if and only if a
(1),M
^
M

N0

so below we drop M and only talk about a
(1)

^
M
N0, and similarly for

(2)

^. Note that

working inside M is not essential (we could always make the ambient model N̂
grow bigger as our proof proceeds) but simplifies the notation and lets us quote
our previous proofs verbatim.

Now, we observe that our proof of Corollary 4.14 is local-enough (i.e. it can be
carried out inside M). We sketch the details: First build a sequence (Mi)i<ω

independent (in the sense of
(2)

^) over M so that M0 = N0, Mi ≡M N0. Let
N :=

⋃
i<ωN

′
i , where N ′i witness the independence of the sequence. Notice that we

can take N ∈ Kλ, by cardinality considerations. By extension, find f : N ≡M N ′

so that a
(1)

^
M
N ′. Let M ′

i := f [Mi]. By the proof of Lemma 4.11 (and recalling that

κ1(^) ≤ ω in good frames), there is i < ω such that a
(2)

^
M
M ′

i (notice that Fact

6.11 is what make the argument go through). Finally, use the proof of Lemma 4.7

to conclude that a
(2)

^
M
N0. �

We do not know whether one can say more, namely:

Question 6.14. Let s1 and s2 be good λ-frames with the same underlying AEC
and the same basic types. Is s1 = s2?

7. Conclusion

We have shown that an AEC with a monster model can have at most one “forking-
like” notion. On the other hand, we believe the question of when such a forking-like
notion exists is still poorly understood. For example, is there a natural condition
implying that coheir has extension in Fact 3.16? Even the following is open:
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Question 7.1. Assume K is fully < κ-tame, fully < κ-type short and categorical
in some λ > κ. Does K have an independence relation with (E), (U) and (L)?

Using the good frames machinery, this is essentially shown to hold in [Bonb] using
some GCH-like hypotheses. We believe however that the global assumptions of
tameness and a monster model should give us a lot more power than just the local
assumptions used to obtain a good frame, so it is worth asking whether one can
give natural conditions under which (in ZFC) an independence relation exists.

We also do not known what such an independence relation should look like. For
example:

Question 7.2. Assume ^ is an independence relation with (E), (U) and (L). Let

M be sufficiently saturated. Under what conditions does ^
M

=
(ch)

^
M

?

Theorem 6.7 answers this question assuming
(ch)

^ has (E), but we are looking for
more natural conditions here.

Finally, we note that while some of our results are local and can be adapted to
the good frames context (see e.g. Theorem 6.13), some are not (e.g. Theorem 5.14,
Lemma 5.4.4). It would be interesting to know how much non-locality is really
necessary for such results. This would help us understand how much power the
globalness of our definition of independence relations really gives us.
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