1) A Dirichlet series is a series \(D(s) = \sum_{1 \leq n < \infty} a_n n^{-s} \), with complex coefficients \(a_n \) such that \(|a_n| = O(n^N) \) for some \(N \in \mathbb{Z} \). Note that the series converges absolutely and locally uniformly for \(s \in \mathbb{C}, \text{Re}\ s > N + 1 \). The least real number \(\sigma \) such that the series converges absolutely for \(\text{Re}\ s > \sigma \) (so \(\sigma \leq N + 1 \)) is called the abscissa of absolute convergence. Show: for \(\sigma_1 > \sigma \) and all \(n \geq 1 \),

\[
 a_n = \lim_{T \to \infty} \frac{n^{\sigma_1}}{T} \int_0^T D(\sigma_1 + it) n^i dt.
\]

Deduce that \(D(s) \) cannot vanish identically unless all the coefficients \(a_n \) vanish. Can this last conclusion be seen more directly?

2) The point of this problem is to identify the genus of the compactification of \(G_\mathbb{Z} \backslash H \) without using topology or differential geometry. It is a little easier to do so for \(\Gamma(2) \backslash H \), since \(\Gamma(2) \) is the principal congruence subgroup of level 2 acts on \(H \) without fixed points, and then to relate the genus of the compactification of \(\Gamma(2) \backslash H \) to that of the compactification of \(G_\mathbb{Z} \backslash H \).

a) In class, we proved that for any subgroup of finite index \(\Gamma \subset G_\mathbb{Z} \) of finite index, the compactification of \(\Gamma \backslash H \) has genus

\[
 g = 1 + \frac{n}{12} - \frac{n_2}{4} - \frac{n_3}{3} - \frac{n_\infty}{2},
\]

with \(n = \) number of sheets of the ramified covering \(\Gamma \backslash H \to G_\mathbb{Z} \backslash H \), \(n_j = \) number of fixed points of order \(j \), \(j = 2 \) or \(j = 3 \), and \(n_\infty = \) number of cusps. This formula was derived using the fact that the compactification of \(G_\mathbb{Z} \backslash H \) has genus 0; if, for the purposes of this problem, the genus is some unknown integer \(g_0 \), how does the above formula need to be modified?

b) Determine the integers \(n, n_2, n_3 \) and \(n_\infty \) for \(\Gamma = \Gamma(2) \).

c) In Math 213a, we used purely analytic methods to identify the universal covering of \(\mathbb{C} - \{0,1\} \) with \(H \) and the universal covering group with \(\Gamma(2)/\{\pm 1\} \). Using this result and parts a), b) to determine the genus of the compactification of \(G_\mathbb{Z} \backslash H \).