1) Let $\Gamma \subset G_Z$ be a subgroup of finite index. Following the outline given in class, carefully state and prove the existence of a compactification of $\Gamma \backslash H$, obtained by adding one point at each cusp. Show that this compactification has a natural structure of Riemann surface.

2) Recall the notion of an equivariant line bundle $\mathcal{L} \to X$ – equivariant with respect to the action of a group G that acts on the Riemann surface X: an action of G, by holomorphic maps, on the total space of \mathcal{L}, lying over the action of G on X (in the sense that the projection $p : \mathcal{L} \to X$ relates the two actions), such that for each $g \in G$ and $x \in X$, the map $\mathcal{L}_x \to \mathcal{L}_{gx}$ induced by g is linear. Since this linear map has an inverse of the same type, it is necessarily a linear isomorphism. Recall also that the line bundles $\mathcal{L}_k \to \mathbb{C}P^1$ are $G_{\mathbb{C}}$-equivariant. In particular, the restricted line bundle $\mathcal{L}_k \to H$ is G_R-equivariant, and therefore equivariant with respect to the action of any subgroup $\Gamma \subset G_R$.

a) Let $\Gamma \subset G_R$ be a discrete subgroup which acts on H without fixed points in the geometric sense – i.e., Γ may contain -1, but if so, $\Gamma / \{\pm 1\}$ acts without fixed points. If k is odd, suppose $-1 \notin \Gamma$. Show that \mathcal{L}_k “drops” to $\Gamma \backslash H$. In other words, there exists a holomorphic line bundle over $\Gamma \backslash H$, whose space of holomorphic sections over any open subset $U \subset \Gamma \backslash H$ is naturally isomorphic to the space of holomorphic sections of \mathcal{L}_k over the inverse image $\tilde{U} \subset H$ of U. Naturality means in particular that the isomorphism is compatible with respect to restriction to open subsets. With a slight abuse of notation, we denote that line bundle on $\Gamma \backslash H$ by the same symbol \mathcal{L}_k.

b) In addition to the assumptions made in a), suppose that $\Gamma \subset G_Z$ is a subgroup of finite index. Show that the line bundle $\mathcal{L}_k \to \Gamma \backslash H$ constructed in a) extends naturally to the compactification of $\Gamma \backslash H$. Caution: a holomorphic line bundle $\mathcal{L} \to \Delta^*$ over the punctured disk Δ^* can be extended across the puncture in more than one way, since the line bundle $\mathcal{L}_{\{0\}} \to \Delta$ corresponding to the divisor $\{0\}$ is trivial over Δ^* (here Δ and Δ^* should be thought of as open subsets of an ambient compact Riemann surface; all holomorphic line bundles over the disk itself are trivial). One way to get a “distinguished” extension across the puncture is to have a “distinguished” section over Δ^* without zeroes; if that section can be continued to a non-zero section of the extension of \mathcal{L} across the puncture, the extension becomes uniquely determined.