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Abstract. Let L be a countable first order language. Let A be
a Σ1 admissible set such that L ∈ A and the cardinality of A is
ω1. Let T ⊆ LA,ω be a set of sentences such that < A, T > is Σ1
admissible. T is consistent iff no contradiction can be derived
from T via a deduction in A. T is complete iff for each sentence
F ∈ LA,ω, either F ∈ T or (¬F) ∈ T . An n-type p of T is a
consistent, complete set of formulas of arity ≤ n such that < A, p >
is Σ1 admissible; ST is the set of all types of T .
Note that sentences of uncountable length may belong to T .
Say T is degenerate iff T has a countable, ω-homogeneous

model that realizes every type in ST .
A typical instance of type-completeness is: if ∃yF(x, y) ∈

p(x) ∈ ST , then there is a q(x, y) ∈ ST such that p(x) ⊆ q(x, y)
and F(x, y) ∈ q(x, y).
T is type-admissible iff < A, p > is Σ1 admissible for each

finite, coherent pair p of types.
Main Results: If T is consistent, complete, type-complete,

type-admissible, and not degenerate, then T has a model of car-
dinality ω1; Mild stability implies type-completeness and type-
admissibilty.
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1. Introduction

This paper stands on its own four feet1 but also serves as an introduc-
tion to the arguments of its sequel [5], where longer sentences, larger
models and more complex countable approximations are studied. The
proof of theMain Result below was inspired by the work of Barwise
[1] and his students on admissible sets and their application to model
theory [4]. Jensen’s proof [2] of the gap-2 conjecture in L plays a part,
behind the scenes in this paper, but on stage in its sequel [5].
Let L be a countable first order language. Recall that L∞,ω is an

extension of first order logic that allows arbitrary conjunctions and
disjunctions of formulas subject to the restriction that a formula can
contain only finitely many free variables. On the other hand a formula
can mention arbitrarily many individual constants.
Recall that a set A is Σ1 admissible iffA is transitive, closed under

pairing and unary unions, and satisfies ∆0 separation and ∆0 collection
(or bounding); Σ1 admissibility implies∆1 separation andΣ1 collection.

From now on assume A is a Σ1 admissible set such that L ∈ A
and the cardinality of A is ω1.

(Note: the uncountability of A does not imply ω1 ⊆ A.) For any
Z ⊆ A, define

A[Z] = ∪{L(α, tc({a});Z) | a ∈ A}, (1.1)

where α is the least ordinal not in A, and L(α, tc({a});Z) is the result
of iterating first order definability, with x ∈ Z as an additional ∆0

formula, through the ordinals less than α, and with tc({a}) as the
starting set (tc is transitive closure). The structure < A[Z], Z > is
said to be Σ1 admissible iff A[Z] is Σ1 admissible with x ∈ Z as an
additional ∆0 formula. Define LA,ω to be be the restriction of L∞,ω to
formulas with standard codes in A.

Assume T ⊆ LA,ω is a set of sentences such that < A[T ], T > is Σ1

admissible.

Definition 1. Suppose Z ⊆ A; Z is amenable iff (Z ∩ b) ∈ A for
every b ∈ A.

1With thanks to Theodore Slaman.
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Remark 2. Recall A[Z] = A iff Z is amenable.

Assume T is amenable. Thus < A, T > is Σ1 admissible.

Definition 3. T is consistent iff no contradiction can be derived from
T using the axioms and rules of L∞,ω via a deduction that belongs to
A. (The axioms and rules of L∞,ω extend first order logic primarily by
adding an infinitary conjunction rule: if Fi is deducible for each i ∈ I,
then ∧{Fi | i ∈ I} is deducible.) As a rule, below a set Z ⊆ LA,ω will
be said to be consistent iff < A,Z > is Σ1 admissible (this implies
Z is amenable), and no deduction in A from Z yields a contradiction.
(Also the set of free variables occurring in Z is finite.)

Remark 4. Let Z ⊆ LA,ω be as in Definition 3. By Barwise Z is
consistent in the strongest syntactical sense: no deduction in V, the
class of all sets, from Z using the axioms and rules of L∞,ω yields a
contradiction.

Definition 5. T is complete iff for each sentence F ∈ LA,ω, F ∈ T
or (¬F) ∈ T .
Definition 6. Let x denote a sequence x1, ...xn of n distinct free vari-
ables. A formula has arity n iff the number of distinct free variables
occurring in it is n. An n-type p(x) of T is a set of formulas whose
free variables occur in x and such that:
(i) p(x) ⊆ LA,ω and p(x) is amenable;
(ii) For each G(x) ∈ LA,ω of arity ≤ n, either G(x) ∈ p(x) or (¬G(x)) ∈
p(x);
(iii) The structure < A, p(x) > is Σ1 admissible;
(iv) T ⊆ p(x) and p(x) is consistent.

Definition 7. ST is the set of all n-types of T for all n > 0.

Proposition 8. Suppose ∨{Gi(x) | i ∈ I} ∈ p(x).Then for some i0 ∈ I,
Gi0(x) ∈ p(x).

Proof. Suppose not. Then (¬Gi(x)) ∈ p(x) for all i ∈ I. By clause (iii)
of Definition 6,

∧{¬Gi(x) | i ∈ I} (1.2)
is deducible from p(x) via a deduction in A. But then p(x) is inconsis-
tent. �
A type is presented as a set p(x) of formulas whose free variables

belong to x. The choice of x matters.
For v a subsequence of x (v ⊆ x), define

p(v) = {F(v) | F(v) ∈ p(x)}. (1.3)
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Definition 9. Suppose p1(x1 ), p2(x2 ) ∈ ST . Let v (= x1 ∩x2 ) be the
sequence of variables common to x1 and x2. The pair, p1(x1 ), p2(x2 ),
is said to be coherent iff p1(v) = p2(v).

Definition 10. T is type-admissible iff < A, p > is Σ1 admissible
for each coherent pair p of types in ST .

Type-admissibility is needed for the amalgamation of types during
the construction of the model Bω1 in the proof of the Main Result. In
some situations it can be dropped, cf. Subsections 5.2 and 5.3.

Proposition 11. Suppose T is amenable, consistent, complete and
type-admissible. If p1(x1 ), p2(x2 ) is a coherent pair of types, then
p1(x1 ) ∪ p2(x2 ) is consistent.

Proof. Suppose not. Then there is a deduction in A of a contradiction
from F1(x1 ) ∧ F2(x2 ) for some Fi(xi ) ∈ pi(xi ) (i = 1, 2). Let v be
x1 ∩ x2, and ui be xi − v. Then

∃u1F1(u1, v) ∧ ∃u2F2(u2, v) (1.4)

yields a contradiction. But the coherence of p1 and p2 implies formula
(1.4) belongs to p1(x1 ). �
Notation 12. Let x1 ∪ x2 denote a sequence of distinct free variables,
every one of which occurs in x1 or x2.

Definition 13. T is type-complete iff:
Suppose p1(x1 ), p2(x2 ) ∈ ST and

{∃yG(x1 ∪ x2, y)} ∪ p1(x1 ) ∪ p2(x2 ) (1.5)

is consistent. Then there exists an r(x1 ∪ x2, y) ∈ ST such that
G(x1 ∪ x2, y) ∈ r(x1 ∪ x2, y) and

p1(x1 ), p2(x2 ) ⊆ r(x1 ∪ x2, y). (1.6)

Every consistent, complete theory contained in a countable fragment
of Lω1,ω is type-complete. In the uncountable case a type-complete the-
ory has advantages similar to those of an atomic theory, cf. Subsection
5.2.

Proposition 14. Suppose T is amenable, consistent, complete, type-
admissible and type-complete. If p1(x1 ) ∪ p2(x2 ) is consistent, then
there exists an r(x1 ∪ x2 ) ∈ ST such that p1(x1 ), p2(x2 ) ⊆ r(x1 ∪ x2 ).

Proof. An instance of type-completeness with

[(x1 ∪ x2 = x1 ∪ x2 )] ∧ (y = y) (1.7)

as G(x1 ∪ x2, y). �
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Definition 15. T is degenerate iff T has a countable, ω-homogeneous
model that realizes every type in ST .

Main Result (MR). If T is amenable, consistent, complete, type-
complete, type-admissible, and not degenerate, then T has a model B
of cardinality ω1.

MR+. In addition: if X ⊆ ST and card(X) = ω1, then B can be
made to realize all the types in X.

The proof of MR given below, after a minor adjustment in Subsec-
tion 5.2, yields an atomic model when T is atomic; in that case the
assumptions of amenability, type-completeness and type-admissibility
can be dropped.
Let Bω1 be the model whose existence is claimed in the main result.

The structure Bω1 is a Henkin-style model that is the limit of a chain
of countable partial Henkin models, Bγ (γ < ω1). Bγ is said to be
“partial,”because it is the result of a Henkin-type construction Cγ of
length ω carried out on a countable set of formulas that may lack the
subformula property. The construction Cγ builds a partial model of
Tγ, the intersection of T with a countable Σ1 hull Hγ. The theory Tγ
may have a sentence G of uncountable length; consequently G will be
declared true by Cγ, but if G has an existential subsentence not in
Hγ, then that subsentence will not be assigned an existential witness
by Cγ. On the other hand each n-tuple of Henkin constants of Bγ is
assigned to some n-type of T . The hull Hγ ensures that Tγ is a good
approximation of T , an approximation that gets better as γ increases.
The embeddability of Bγ in Bγ+1 results from a property of Bγ+1 akin
to ω-saturation.

2. Σ1 Substructures

Let H be a Σ1 substructure of the universe V (H �1 V ) such that
the cardinality of H is ω1, A ⊆ H,and A, T, ST ∈ H. Define

STH = ST ∩H. (2.1)

Proposition 16. If STH is countable, then STH = ST .

Proof. Suppose ST is uncountable. In H there is an one-one map of
A into ST . But then STH is uncountable since A ⊆ H. Thus ST is
countable. In H there is a map of ω onto ST , so ST ⊆ H. �
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Proposition 17. There exists a chain Hγ (γ < ω1) of countable struc-
tures such that

A, T ∈ H0, (2.2)

Hγ �1 Hγ+1 (γ < ω1), (2.3)

Hλ = ∪{Hγ | γ < λ} (limit λ < ω1), (2.4)

H = ∪{Hγ | γ < ω1}. (2.5)

3. Akin to ω-Saturation

For γ < ω1, define

Lγ,ω = LA,ω ∩Hγ, (3.1)

Tγ = T ∩Hγ, (3.2)

STγ = STH ∩Hγ. (3.3)

Then LA,ω is ∪{Lγ,ω | γ < ω1}, T is ∪{Tγ | γ < ω1}, and STH is
∪{STγ | γ < ω1}.
From an intuitive point of view, the structure Bγ is the result of build-

ing a countable ω-homogeneous structure that realizes all the types in
STγ and no others.
Construction of Bγ. Fix s < ω. Prior to stage s of the con-

struction, a sequence cγ,s of distinct individual constants cγ1 , ..., c
γ
s was

developed ( cγ,0 is null). A type rγ,s(xγ,s ) ∈ STγ was assigned to cγ,s;
thus xγ,s denotes xγ1 , ..., x

γ
s , and the result of the construction prior to

stage s is the set of sentences rγ,s( cγ,s ) (rγ,0 is T ). Suppose v is a
subsequence of xγ,s and d is a subsequence of cγ,s that realizes rγ,s( v );
i.e. rγ,s( d ) ∈ rγ,s( cγ,s ). Let y be a variable not occurring in xγ,s.
Case I (existential witnesses). Suppose G(v, y) ∈ Lγ,ω and

∃yG( d, y) ∈ rγ,s( d). (3.4)

Then {∃yG( v, y)} ∪ rγ,s( v ) is consistent. By the type-completeness of
T, there is an r(v, y) ∈ ST such that

G( v, y) ∈ r( v, y) and rγ,s( v ) ⊆ r(v, y). (3.5)

By Propositions 11 and 14 there is an r′(xγ,s, y) ∈ ST such that
rγ,s(xγ,s ), r( v, y) ⊆ r′(xγ,s, y). And r′(xγ,s, y) can be taken from STγ,
since Hγ 41 H 41 V .
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Let e be an individual constant not occurring in cγ,s or in L or in Bδ
for any δ < γ Define:

cγs+1 = e; (3.6)

cγ,s+1 is the sequence cγ,s, cγs+1; (3.7)

rγ,s+1(xγ,s+1 ) = r′(xγ,s, y). (3.8)

The result of the construction at the end of stage s is the set of sentences
rγ,s+1( cγ,s+1 ). And G( d, cγs+1) ∈ rγ,s+1( cγ,s+1 ).
Case 2 (homogeneity and universality). Suppose q( v, y) ∈ STγ and

rγ,s( v ) ⊆ q( v, y). As in Case 1, there is an r′(xγ,s, y) ∈ STγ such that
rγ,s(xγ,s ), q( v, y) ⊆ r′(xγ,s, y). (3.9)

Let e and rγ,s+1(xγ,s+1 ) be as in Case 1. Then d, e realizes q( v, y) and
the result of the construction at the end of stage s is rγ,s+1( cγ,s, e).
Define

Bγ = ∪{rγ,s( cγ,s ) | s < ω} (3.10)

cγ is cγ1 , c
γ
2 , ...c

γ
s , ...(s < ω). (3.11)

The universe of Bγ is cγ. Let d denote an n-tuple of Bγ (n ≥ 0).

Proposition 18. (i) Bγ is a set of sentences of the form F( d ), where
F(x ) is a formula of LA,,ω and d is a subsequence of cγ. Every sentence
of this form, or its negation, belongs to Bγ.
(ii) Each d has been assigned a type p(x ) ∈ STγ, and Bγ is the union
of all such p( d )’s.
(iii) Suppose ∃yG(x, y) ∈ Lγ,ω and ∃yG( d, y) ∈ Bγ; then G( d, cγs ) ∈ Bγ
for some s.
(iv) Suppose p(x ) has been assigned to d and p(x ) ⊆ q(x, y) ∈ STγ;
then q(x, y) has been assigned to d, e for some e ∈ cγ (p(x ) can be
null).

Remark 19. In the light of Proposition 18 it is reasonable to say: Bγ
is ω-homogeneous and the set of types realized in Bγ is STγ.

4. Proof of The Main Result

An injective, type preserving map

mγ,γ+1 : cγ → cγ+1 (4.1)

is defined by recursion on s < ω . Prior to stage s of the recursion, a
sequence

bγ+1,s = bγ+11 , ..., bγ+1s (4.2)
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was developed so that rγ,s( bγ+1,s ) ⊆ Bγ+1. ( bγ+1,0 is null.) By Propo-
sition 18(iv),

rγ,s+1( bγ+1,s, e) ⊆ Bγ+1 (4.3)

for some e ∈ cγ+1. Define mγ,γ+1(c
γ
s+1) = e = bγ+1s+1 .

The map mγ,γ+1 : Bγ → Bγ+1 is defined by

mγ,γ+1(F( d )) = F(mγ,γ+1( d )). (4.4)

Thus the type assigned to d in Bγ equals the type assigned tomγ,γ+1(d)
in Bγ+1.
A direct system, {Bγ,mγ,δ | γ < δ < ω} is defined by recursion on

ω1.
Define mγ,δ+1 = mδ,δ+1mγ,δ. If λ is a countable limit, then let

B′λ,m′γ,λ (γ < λ) be the direct limit of {Bγ,mγ,δ | γ < δ < λ}. Recall
the terminology suggested in Remark 19. By Proposition 18, both B′λ
and Bλ are ω-homogeneous and realize the same set of types, STλ. A
back-and-forth argument produces an isomorphism

iλ : B′λ → Bλ. (4.5)

Define mγ,λ = iλm
′
γ,λ.

Definition 20. Bω1 is the direct limit of {Bγ,mγδ | γ < δ < λ < ω1}.

Lemma 21. (i) Bω1 is finitarily consistent; i.e. no deduction from Bω1
of finite length yields a contradiction.
(ii) If a disjunction belongs to Bω1, then some term of the disjunction
belongs to Bω1.
(iii) Bω1 has existential witnesses.
(iv) (completeness) Suppose F(x ) belongs to LA,ω and d is a sequence
of individual constants of Bω1, constants of the form mγ,ω1(c

γ
s ); then

F( d ), or its negation, belongs to Bω1.
(v) Let Bω1 ambiguously denote the Henkin-style model defined by the
sentences of Bω1. Then Bω1 is ω-homogeneous and the set of types
realized in Bω1 is STH .
(vi) Bω1 has cardinality ω1.

Proof. Assertions (i)-(iv) follow from Proposition 18. A Henkin-style
model is determined by Bω1 as in first order logic thanks to (i)-(iv).
Suppose Bω1 is countable. Hence Bω1 = Bγ0 for some countable γ0.
Then STH is countable by Lemma 21(iii), hence STH = ST by Propo-
sition 16, and so T is degenerate. �
MR+. In addition: if X ⊆ ST and card(X) = ω1, then B can be

made to realize all the types in X.
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Proof. A slight modification of Sections 2 and 3. Let HX be a Σ1 sub-
structure of V such that card(HX) = ω1; X,A ⊆ HX ; andX,A, T, ST ∈
HX . Define

STXH = (ST ∩HX). (4.6)
There exists a chain HX

γ (γ < ω1) of countable structures such that

X,A, T ∈ HX
0 , (4.7)

HX
γ �1 HX

γ+1, (4.8)

HX
λ = ∪{HX

γ | γ < λ} (limit λ), (4.9)

HX = ∪{HX
γ | γ < ω1}. (4.10)

Define STXγ = STXH ∩HX
γ (γ < ω1). Then STXH = ∪{STXγ | γ < ω1}.

Now proceed as in Section 3. The set of types realized in Bγ will be
STXγ . �

5. Extensions of MR and MR+

5.1. The Number of Models.

Corollary 22. Assume T is amenable, consistent, complete, type-
complete, type-admissible, and not degenerate. If card(ST ) > ω1, then
the number of models of T of cardinality ω1 is at least card(ST ).

Proof. Let {pγ | γ < card(ST )} be an enumeration of ST . Let Bγ be
a model of T of cardinality ω1 that realizes pγ. Then the number of
models of T (up to isomorphism) in {Bγ | γ < card(ST )} is at least
card(ST ); otherwise card(ST ) ≤ ω1. �
5.2. Atomic Theories. (In this subsection, as in the Introduction, L
is a countable first order language, A is a Σ1 admissible set of cardi-
nality ω1, T ⊆ LA,ω, and < A, T > is Σ1 admissible.)

Corollary 23. Assume T is consistent, complete and atomic. Suppose
T does not have a countable atomic model. Then T has an atomic
model of cardinality ω1.

Proof. A small modification of Sections 2, 3 and 4. Define aT to be
the set of atoms of T. (There are no repetitions in aT ; each atom of
T has just one formula representing it in aT .) Replace ST by aT
in the definition of H in Section 2. Define Hγ as in Section 2. Let
aTγ = aT ∩ Hγ. Then aT = ∪{aTγ | γ < ω1}. Now proceed as in
Section 3. In both cases of the construction of Bγ, the type r′ is an
atom. As in Remark 19, it is reasonable to say Bγ is ω-homogeneous
and the set of types realized in Bγ is aTγ. If Bω1 were countable, then
T would have a countable atomic model. �
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5.3. Lω1,ω. Let HC be the set of hereditarily countable sets. Let L be
countable and ∈ HC. Then Lω1,ω is LHC,ω. For any Z ⊆ HC: Z is
amenable and < HC,Z > is Σ1 admissible.

Corollary 24. Assume the Continuum Hypothesis. If T ⊆ Lω1,ω is
consistent, complete, type-complete and not degenerate, then T has a
model of cardinality ω1.

6. Stability,Type-Completeness and Type-Admissibility

This section outlines some of the points made in [5]. Suppose L is a
countable first order language, A is a Σ1 admissible set, and T ⊆ LA,ω
is a set of sentences such that < A, T > is Σ1 admissible and T is
consistent and complete as in Section 1. Note that no assumption is
made about the cardinality of A.
Does T have a model? A seemingly simpler question is: Does T

have any types? The latter can be answered with the help of a suitable
notion of stability. Call T mildly stable if ST ′, the set of types of T ′,
is countable whenever T ′ is a countable subtheory of T .
A sketch of a proof that ST 6= ∅. There exists a countable H ≺1 V

such that T, ST ∈ H. Then

TH = T ∩H

is countable. So S(TH) is countable by mild stability of T . Let

m : H −→ m[H]

be the Mostowski collapse. Thusm[TH ] = m(T ) and S(TH) is {m−1[p] |
p ∈ S(m(T ))}. Hence S(m(T )) is countable. Hence

S(m(T )) ∈ m[H]

by arguments in effective descriptive set theory (similar to showing a
countable ∆1

1 set of hyperarithmetic reals is a member of L(ωCK1 )).
Then S(m(T )) 6= ∅ because m(T ) is countable. Choose p ∈ S(m(T )).
Then m−1(p) ∈ ST .

Lemma 25. If T is mildly stable, then T is type-complete.

Mild stability also helps to resolve the question of type-admissibility.
Let A+ be be the least Σ1 admissible set with A as a member. Call A

strongly admissible if < A,Z ∩A > is Σ1 admissible for all Z ∈ A+.

Lemma 26. If T is mildly stable, A is strongly admissible and T ∈ A+,
then T is type-admissible.
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