Open Covers and Compactness

Suppose \((X, d)\) is a metric space.

Definition
Let \(E \subseteq X\). An *open cover* of \(E\) is a collection \(\{G_\alpha : \alpha \in I\}\) of open subsets of \(X\) such that \(E \subseteq \bigcup_{\alpha \in I} G_\alpha\).

Definition
A subset \(K\) of \(X\) is *compact* if every open cover contains a *finite* subcover.

In other words if \(\{G_\alpha : \alpha \in I\}\) is a collection of open subsets of \(X\) with \(K \subseteq \bigcup_{\alpha \in I} G_\alpha\) then there is a finite set \(\{\alpha_1, \alpha_2, \ldots, \alpha_n\} \subseteq I\) such that

\[
K \subseteq G_{\alpha_1} \cup G_{\alpha_2} \cup \cdots \cup G_{\alpha_n}
\]
Examples of Compact Sets:
- Every finite set is compact.
- Any closed interval \([a, b]\) in \(\mathbb{R}^1\).

Examples of Non-Compact Sets:
- \(\mathbb{Z}\) in \(\mathbb{R}^1\).
- Any open interval \((a, b)\) in \(\mathbb{R}^1\).
- \(\mathbb{R}^1\) as a subset of \(\mathbb{R}^1\).
Relative Compactness

Theorem
Suppose (X, d) is a metric space and $K \subseteq Y \subseteq X$. Then K is a compact subset of (X, d) if and only if K is a compact subset of (Y, d).

So unlike with closed and open sets, a set is “compact relative a subset Y” if and only if it is compact relative to the whole space.
Compact Subsets are Closed

Theorem

Compact subsets of a metric space are closed.
Closed Subsets and Compactness

Theorem
Closed subsets of compact sets are compact.

Corollary
If F is closed and K is compact then $F \cap K$ is compact.
Intersection of Compact Sets

Theorem
If \(\{ K_\alpha : \alpha \in I \} \) is a collection of compact subsets of a metric space \(X \) such that the intersection of every finite subcollection of \(\{ K_\alpha : \alpha \in I \} \) is non-empty then \(\bigcap_{\alpha \in I} K_\alpha \) is nonempty.

Corollary
If \(\{ K_n : n \in \mathbb{N} \} \) is a sequence of nonempty compact sets such that \(K_n \supseteq K_{n+1} \) (for \(n = 1, 2, 3, \ldots \)) then \(\bigcap_{1}^{\infty} K_n \) is not empty.
Theorem

Every infinite subset of a compact set K has a limit point in K.
Intersection of k-cells

Theorem
If $\{I_n : n \in \mathbb{N}\}$ is a sequence of nonempty intervals in \mathbb{R}^1 such that $I_n \supseteq I_{n+1}$ (for $n = 1, 2, 3, \ldots$) then $\bigcap_{1}^{\infty} I_n$ is not empty.

Theorem
Let k be a positive integer. If $\{I_n : n \in \mathbb{N}\}$ is a sequence of nonempty k-cells such that $I_n \supseteq I_{n+1}$ (for $n = 1, 2, 3, \ldots$) then $\bigcap_{1}^{\infty} I_n$ is not empty.
k-Cells are Compact

Theorem

Every k-cell is compact.
Closed and Bounded Subsets of \mathbb{R}^k

Theorem

If $E \subseteq \mathbb{R}^k$ then the following are equivalent:

(a) E is closed and bounded.

(b) E is compact.

(c) Every infinite subset of E has a limit point in E.

Corollary (Weierstrass)

Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k.
Define two subsets A, B of a metric space X are said to be separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty. I.e. if no point of A lies in the closure of B and no point of B lies in the closure of A.

A set $E \subseteq X$ is said to be connected if E is not the union of two nonempty separated sets.

Note that while any two separated sets are disjoint, not all disjoint sets are separate.

Consider $[0, 1]$ and $(1, 2)$. $[0, 1] \cap (1, 2) = \emptyset$ but $1 \in [0, 1]$ and 1 is a limit point of $(1, 2)$.
Connected Subsets of \mathbb{R}^1

Theorem

A subset E of the real line \mathbb{R}^1 is connected if and only if it has the following property: If $x \in E$, $y \in E$ and $x < z < y$ then $z \in E$.