The most first numbers every considered were the whole numbers:

1, 2, 3, ...
The most first numbers every considered were the whole numbers:

$$1, 2, 3, \ldots$$

Then someone realized that it was important to include a number representing “nothing”. This then gave us the natural numbers:

$$\mathbb{N} = 1, 2, 3, \ldots$$
Then people noticed that addition worked better if there were negative numbers. This led us to the integers

$$\mathbb{Z} = \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots$$
Then people noticed that addition worked better if there were negative numbers. This led us to the integers

\[\mathbb{Z} = \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \]

After dealing with the integers for a while people began to notice the usefulness of fractions and the rational numbers were born:

\[\mathbb{Q} = \left\{ \frac{a}{b} : a, b \in \mathbb{Z} \right\} \]
Square Root of Two

What is next...?
Square Root of Two

What is next...?

Theorem

There is no rational number p *such that* $p^2 = 2$.
Definition of a Set

Definition
A set is a collection of objects. If a set has at least one element we say it is *non-empty*. If a set has no objects we say it is *empty*.

Definition
Suppose A is a set
- If x is a member of A we write $x \in A$.
- If x is not a member of A we write $x \notin A$.
Definition of a Set

Suppose A and B are sets

- If every element of A is an element of B we say A is a subset of B and write $A \subseteq B$ or $B \supseteq A$.
- If A is a subset of B and not equal to B we say A is a proper subset of B.
- If $A \subseteq B$ and $B \subseteq A$ then we say the sets are equal and write $A = B$.
Ordered Sets

Definition

Let S be a set. An order on S is a relation, denoted by $<$, such that the following two properties hold

(i) If $x \in S$ and $y \in S$ then one and only one of the following is true

- $x < y$
- $x = y$
- $y < x$

(ii) For all $x, y, z \in S$, if $x < y$ and $y < z$ then $x < z$
Definition

An *ordered set* is a set S in which an order is defined.

Definition

If S is an ordered set with $<$ and $x < y$, we often say x is *less than* y. We also often use $y > x$ in place of $x < y$ when convenient.

We will use $x \leq y$ as a shorthand for $x < y$ or $x = y$. i.e. $x \leq y$ if and only if (NOT $y < x$)
Examples of Ordered Sets

Here are some examples

- The one point set \{\ast\} with nothing satisfying \(<\)
Examples of Ordered Sets

Here are some examples

- The one point set \{\star\} with nothing satisfying \(< \)
- \(\mathbb{Z} \) with the order \(a < b \) if and only if \(b - a \) is positive.
Examples of Ordered Sets

Here are some examples

- The one point set \(\{\ast\} \) with nothing satisfying \(<\).
- \(\mathbb{Z} \) with the order \(a < b \) if and only if \(b - a \) is positive.
- \(\mathbb{Z} \) with the order \(a < b \) if either
 - \(|a| < |b| \)
 - \(|a| = |b| \), \(a \) is negative and \(b \) is positive.

Notice that if \(S \) is an ordered set with \(<\) and \(E \subseteq S \) then \(E \) is an ordered set with \(<\).
Definition

Suppose S is an ordered set and $E \subseteq S$.

- If there exists $\beta \in S$ such that $x \leq \beta$ for all $x \in E$ then we say E is bounded above and call β an upper bound.
- If there exists $\beta \in S$ such that $x \geq \beta$ for all $x \in E$ then we say E is bounded below and call β an lower bound.
Least Upper and Greatest Lower Bounds

Definition

Suppose S is an ordered set and $E \subseteq S$.

- Suppose there exists an $\alpha \in S$ such that
 1. α is an upper bound of E
 2. If $\gamma < \alpha$ then γ is not an upper bound of E

 We then say α is the least upper bound of E or the supremum of E and write $\alpha = \sup E$

- Suppose there exists an $\alpha \in S$ such that
 1. α is a lower bound of E
 2. If $\gamma > \alpha$ then γ is not a lower bound of E

 We then say α is the greatest lower bound of E or the infimum of E and write $\alpha = \inf E$
Examples

Let's consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{ q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1 \}$
Examples

Let's consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{ q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1 \}$

 X has a greatest lower bound and a least upper bound in X.
Examples

Let $X = \{q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1\}$
- X has a greatest lower bound and a least upper bound in X

Let $X = \{q \in \mathbb{Q} : q > 0 \text{ and } q < 1\}$
Examples

Let's consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1\}$
 X has a greatest lower bound and a least upper bound in X

- Let $X = \{q \in \mathbb{Q} : q > 0 \text{ and } q < 1\}$
 X has a greatest lower bound and a least upper bound in \mathbb{Q}
 but not in X.

- Let $X = \{n \in \mathbb{Z} : n \geq 0\}$
 X has a least upper bound

- Let $X = \{q \in \mathbb{Q} : 2 \leq q^2 \text{ and } q^2 \leq 3\}$
 X is bounded above and below but does not have a least upper bound or a greatest lower bound in \mathbb{Q}.

Examples

Let's consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1\}$
 X has a greatest lower bound and a least upper bound in X

- Let $X = \{q \in \mathbb{Q} : q > 0 \text{ and } q < 1\}$
 X has a greatest lower bound and a least upper bound in \mathbb{Q}
 but not in X.

- Let $X = \{q \in \mathbb{Q} : q \geq 0\}$
Examples

Let's consider the set \(\mathbb{Q} \) with the standard ordering.

- Let \(X = \{ q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1 \} \)
 \(X \) has a greatest lower bound and a least upper bound in \(X \)

- Let \(X = \{ q \in \mathbb{Q} : q > 0 \text{ and } q < 1 \} \)
 \(X \) has a greatest lower bound and a least upper bound in \(\mathbb{Q} \) but not in \(X \).

- Let \(X = \{ q \in \mathbb{Q} : q \geq 0 \} \)
 \(X \) has a greatest lower bound in \(X \) but is not bounded above.
Examples

Let's consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1\}$
 X has a greatest lower bound and a least upper bound in X.
- Let $X = \{q \in \mathbb{Q} : q > 0 \text{ and } q < 1\}$
 X has a greatest lower bound and a least upper bound in \mathbb{Q} but not in X.
- Let $X = \{q \in \mathbb{Q} : q \geq 0\}$
 X has a greatest lower bound in X but is not bounded above.
- Let $X = \{n : n \in \mathbb{Z}\}$
Examples

Let’s consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{ q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1 \}$
 X has a greatest lower bound and a least upper bound in X

- Let $X = \{ q \in \mathbb{Q} : q > 0 \text{ and } q < 1 \}$
 X has a greatest lower bound and a least upper bound in \mathbb{Q} but not in X.

- Let $X = \{ q \in \mathbb{Q} : q \geq 0 \}$
 X has a greatest lower bound in X but is not bounded above.

- Let $X = \{ n : n \in \mathbb{Z} \}$
 X is not bounded above or below.
Examples

Let’s consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1\}$
 X has a greatest lower bound and a least upper bound in X.

- Let $X = \{q \in \mathbb{Q} : q > 0 \text{ and } q < 1\}$
 X has a greatest lower bound and a least upper bound in \mathbb{Q} but not in X.

- Let $X = \{q \in \mathbb{Q} : q \geq 0\}$
 X has a greatest lower bound in X but is not bounded above.

- Let $X = \{n : n \in \mathbb{Z}\}$
 X is not bounded above or below.

- Let $X = \{q \in \mathbb{Q} : 2 \leq q^2 \text{ and } q^2 \leq 3\}$
Examples

Let's consider the set \mathbb{Q} with the standard ordering.

- Let $X = \{ q \in \mathbb{Q} : q \geq 0 \text{ and } q \leq 1 \}$
 X has a greatest lower bound and a least upper bound in X.

- Let $X = \{ q \in \mathbb{Q} : q > 0 \text{ and } q < 1 \}$
 X has a greatest lower bound and a least upper bound in \mathbb{Q} but not in X.

- Let $X = \{ q \in \mathbb{Q} : q \geq 0 \}$
 X has a greatest lower bound in X but is not bounded above.

- Let $X = \{ n : n \in \mathbb{Z} \}$
 X is not bounded above or below.

- Let $X = \{ q \in \mathbb{Q} : 2 \leq q^2 \text{ and } q^2 \leq 3 \}$
 X bounded above and below but does not have a least upper bound or a greatest lower bound in \mathbb{Q}.
Definition

An ordered set S has the Least Upper Bound Property if for all $E \subseteq S$ such that

- E is non-empty
- E is bounded above

we have $\sup E$ exists in S.
Theorem

Suppose S is an ordered set with the least upper bound property, $B \subseteq S$ with B non-empty and bounded below. Let L be the set of all lower bounds of B. Then

$$\alpha = \sup L$$

exists in S and $\alpha = \inf B$. In particular $\inf B$ exists in S.
Definition

A Field is a set F with two operations called addition (denoted by $+$) and multiplication (denoted by \cdot) which satisfy the following field axioms

(A) Axioms for addition

(A1) If $x, y \in F$ then $x + y \in F$
(A2) Addition is commutative: For all $x, y \in F$, $x + y = y + x$
(A3) Addition is associative: For all $x, y, z \in F$, $x + (y + z) = (x + y) + z$
(A4) F contains a constant 0 such that for all $x \in F$ $0 + x = x$
(A5) For every element $x \in F$ there is an element $-x \in F$ such that $x + (-x) = 0$.
Definition of a Field

(M) Axioms for multiplication

(M1) If $x, y \in F$ then $x \cdot y \in F$

(M2) Multiplication is commutative: For all $x, y \in F$, $x \cdot y = y \cdot x$

(M3) Multiplication is associative: For all $x, y, z \in F$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$

(M4) F contains a constant $1 \neq 0$ such that for all $x \in F$ $1 \cdot x = x$

(M5) If $x \in F$ and $x \neq 0$ then there is an element $1/x \in F$ such that $x \cdot (1/x) = 1$.
Definition of a Field

Definition

(M) Axioms for multiplication

(M1) If \(x, y \in F \) then \(x \cdot y \in F \)

(M2) Multiplication is commutative: For all \(x, y \in F \), \(x \cdot y = y \cdot x \)

(M3) Multiplication is associative: For all \(x, y, z \in F \),
\[
x \cdot (y \cdot z) = (x \cdot y) \cdot z
\]

(M4) \(F \) contains a constant \(1 \neq 0 \) such that for all \(x \in F \), \(1 \cdot x = x \)

(M5) If \(x \in F \) and \(x \neq 0 \) then there is an element \(1/x \in F \) such that \(x \cdot (1/x) = 1 \).

(D) The distributive law

\[
x \cdot (y + z) = x \cdot y + x \cdot z
\]

for all \(x, y, z \in F \).
Examples of Fields

The following are some examples of fields

- The rational numbers: \mathbb{Q}
- The real numbers: \mathbb{R}
- The Complex numbers: \mathbb{C}
- Integers mod a prime p: $\mathbb{Z}/(p)$.
Examples of Fields

The following are some examples of fields

- The rational numbers: \mathbb{Q}
- The real numbers: \mathbb{R}
- The Complex numbers: \mathbb{C}
- Integers mod a prime p: $\mathbb{Z}/(p)$.

The following are not fields

- The non-negative rational numbers $\{x \in \mathbb{Q} : x \geq 0\}$
- Integers mod a composite n: $\mathbb{Z}/(n)$.
The axioms of addition imply the following

(a) If \(x + y = x + z \) then \(y = z \)
(b) If \(x + y = x \) then \(y = 0 \)
(c) If \(x + y = 0 \) then \(x = (-y) \)
(d) If \(-(−x) = x \)
The field axioms imply the following for all $x, y, z \in F$.

(a) $0x = 0$

(b) If $x \neq 0$ and $y \neq 0$ then $xy \neq 0$

(c) If $(-x)y = x(-y) = -(xy)$

(d) If $(-x)(-y) = xy$
An **Ordered Field** is a field F which is also an ordered set (with $<$) such that

- $x + y < x + z$ if $x, y, z \in F$ and $y < z$
- $xy > 0$ if $x, y \in F$, $x > 0$ and $y > 0$

If $x > 0$ then we say x is **positive**.
The following are some examples of ordered fields

- The rational numbers: \(\mathbb{Q} \)
- The real numbers: \(\mathbb{R} \)
The following are some examples of ordered fields

- The rational numbers: \(\mathbb{Q} \)
- The real numbers: \(\mathbb{R} \)

The following are fields which can not be made into ordered fields.

- The Complex numbers: \(\mathbb{C} \)
- Integers mod a prime \(p \): \(\mathbb{Z}/(p) \).
The following are true in every ordered field.

(a) If $x > 0$ then $-x < 0$ and vice versa
(b) If $x > 0$ and $y < z$ then $xy < xz$
(c) If $x < 0$ and $y < z$ then $xy > xz$
(d) If $x \neq 0$ then $x^2 > 0$. In particular $1 > 0$
(e) If $0 < x < y$ then $0 < 1/y < 1/x$