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Introduction:

Guided by the results of Artin and Tate applied to the

calculation of the Grothendieck Cohomology Groups of the schemes;
Spec ( Z/p_ ) & Spec Z .
Z

Mumford has suggested a most elegant model as a geometric
interpretation of the above situation : Spec ( Z/p E) is like
a one-dimensional knot in Spec Z which is like a simply connected
three=manifold.

This analogy cannot fail to strike the imagination of a
Topologist. Moreover, it gives one the impetus to review classical
knot theory with an eye towards méking the Arithmetic connections more

explicit, The object of this paper is to study the Alexander Polynomial

with these connections in mind.

The rules of the game, then, are to give definitions and
statements of results which admit ready translation into Arithmetic.
This is carried out in % L, §5, for much of the classical theory
of the Alexander Polynomial.

In %4, the main theorem (Thm.3) suggests a new definition of
the Alexander Polynomial ofa knot. It is merely the determinant of
a certain module (suitably interpreted). (It is somewhat related to
Milnor's definition [13] ). In &1, 52, %3, the algebraic theory of
determinants [j&] is studied and prepared for eventual application.

Perhaps, before embarking on our project, it might be useful to

show explicitly the number-theoretic analogical interpretations we

have in mind.
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Let p be a prime number, and éﬁy a primitive p Y th
root of 1 and consider the Dedeking Domain Dv = 7 [ ';f’w' ]
Then Spec Dv_ is a c¢yclic covering of Spec _?[ramified exactly at

the prime p if &3 0, The D)I 's play the role of the branched cyclic

coverings of a knot.

One is thus led to compare the deep Arithmetic theory of
Iwasawa, regarding the P-primary component, Xv y °F the ideal
class group of Dv » With the classical studies of the first homology

group of brancheqd cyclic coverings of a knot (of course the latter

theory is quite elementary),

Iwasawa considers

X = 1lip x

where the X ., are related by norm ‘mappings, and takes it as a

A .
module over Zp [ ], the p-adic iategral group ring of

= G(Ka /Ko )
where Ky s the quotient field of D, and K. = WK, .

One of the theorems crucial to the theory of Iwasawa is
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Theorem: X is a torsion module of finite type over
é% p(;r]: This is in perfect analogy with Theorem 3 ¢4
(except for the projective dimension 1 statement). Note
that Theorem 3 is exactly what is necessary in order to
define the Alexander Polynomial of a knot.

)
Similarly the above theoren allows/to form

A
A © =5 .m0 " ‘ .
detfr i (X) ¢ Ly LrJ/U([/ pC_f_] )

which we may interpret as a power series in T = (¥ -1)

Since:
A A
Zyp Crls  ZoLcT)] :

This we may call A(p.k). "the Alexander Polynomial"
of the primey. One may use the structure theorem of Iwasawav
to conmpute 5 (pst) since it is a mod ff invariant (See
ﬁl?ﬂ] ’ £11 ). One ohtains

A(pst) = p% Py (%)
where n is the numerical invariant of X defined by Iwasawa

and Py is the characteristic polynomial of the fundamental

transformation V& I” acting on the finite dimensional vector
N A

sprce over ¢ X

pac ve Qp \ﬁfp QP-

Iwasawa conjectures that m = 0.



IV

It is interesting to consider the duality relation

satisfied by polynominls which are the Alexander Polynomials

of knots. Namely:

A(t) = + 17 A (V)
for soue even n. (See (13 )

One is led to ask whether the characteristic polynomial

Pf' 21so satisfies the above functional equation.



1. The Deterninant

We refer to the forthconing book of D. Muaford(14) for a
treatment of the deterninant (or the first chern class of a
.coherent sheaf over a noetherian schene. This notion was
introduced by Serre and developed by Auslander and Munford (an
elaboration of that excellent notion due to Cayley .

Given a noctherian ring Aand a module M of finte type over

A satisfying (i), (ii) below, the above theory assigns to M
a non-zero principal ideal in /\; called its deterainant. ~ More
generally, and in the language of scheames, (see (7); (6)) if
X is a noetherian schene and‘?a coherent sheaf over X (satiéfying
(1), (ii) velow) one nmay associate 1o tan effective Cartier
Divisor of X, called Div(?). For the theory and definition of
Cartier Divisors, see (8); (14). X will be assuaed noectherian
throughout. 7

An effective Cartier Divisor D over X wmay be identified with
a coherent subsheaf Gﬁ(D);E; which is an invertible Gx —
nodule. (This may be taken as definition).  Then for each

x ex; Ox (D)X,;£§)_x is a principal ideal. A generator of this

ideal is called a local equation for D at Xx.

There are only a finite number of points x ¢ X of depth zero

(i.e. such that G;*f is of depth zero, which means that any non-

unit of &5, X is a zero-divisor), Two Cartier Divisors on X

are equal if they possess equal 'local equations' at all points

x e X of depth 1.



Let %t be 2 coherent sheaf on X sch that:

(i) _Supp C¢) contains no points of depth zero,

(ii) at'is an g’t’ rmodule of finite cohomo ogical
dimension (i.e. possesses a finite projective
resolution) for all x ¢X.

If€ is 2 free o -uodule of rank ¢; A€ will denote the ~fold
exterior prod et sheaf, which is, conaequently, free of rank 1.
There is an isousorphisn |

S - Ae 2%
uniquely determined up to = unit, .

If Ok = . o2 &y 0 is an exact sequence of locally

-free l?’X—modules of finite rank, |

rank (Ei) =0,

we may obtain acanonical isomorphism

" cr——> x ‘(/\ E. )('1):‘L

(the "collation isomorphism"). (For the definition of "collation",
see (14). One reduces the pnroblem of defining the collation to
sequences of length 2 (see lemma 5.6 of (14))

0> 52_,*1;1 J‘eo -0

and for such sequences we produce an explicit isomorphism

¥ A E2 @ I\EO—H\E} as follows: If ¢, =0, take¥:¥,.  Otherwise,



for any open set U, over which the E‘i are free, if
xe F (A~ E,0) = A (E5(0))
ye [ (A®E,iu0)= AT (£ (V)
choose some z € A% (E4 (b)) such that
v (z) =7
and set WX ®y) = ¥ (X) A a
which is in:
N> (£,(0) ~AZ(E (1) =AE (V).
From the exact sequence:
N ,\%1_‘3' A'® € 0
one e~ces that another choice z' above would differ only by:
z' =z + f@(w)
‘and consequently |
% (x) A7 - Yo(x)n 2 = Fp(x) NG (W) =fp(xAw) =0
O+ 0
(g,) = 0.

. >
since xaw €F
Existence =2nd Unigueness

Theorem(]fd’) If % 1is -~ coherent sheaf on X sich that:

(i) &+ is a torsion she=af, That is, Supp t contains no

points of depth O.

X-module of finite projective dimension for

.\ T . .
ii : is an €r
(11) "ty | 1,

all xe€X,
then there is an effective Cartier NDivisor Div jl: on X (which

pl~ys the role of the first chern Clas.é of ) uniquely charac-

terized as follows:



Given any open U' ﬁndkree resolution
0-+Ee ... ~*[_1 - FO*L*’O
over U, set v'=U - Supp t a2nd consider the exact sequence
of free sheaves:
I
on U. Then there is = local equation f er(U,Gx) for Div &
o (Y
A £/ '.(,%/U'\-» (* U
‘ '(‘\,\‘\\x/g (-1)*
® (A5/U3)

is coa:&ztatlve, Jhere1\1s the collation coming from (*) and

such that
£= CX}E (=1)" s built from the canonical isomorphisms E; ACaf .
The assignaent % - (Div L )satisfies the following properties:

(I) It is multiplicative, That is, suppose given an exact

sequence of coherent sheaves which satisfy (i), (ii) above:

0 =FE ~ al:_’ f"—) 0
< a . o b
Then DivE = Div &' - Div 'k

(writing the group of Czrtier Divisors multiplicatively).

Proof: The above formula, being 2 formul=a for Cartier Divisors,
need only be checked at points of depth 1, where by the

Auslender - Buch8bnum Theoren (1) we may find a free resaltion:

~
i

(@]
d
W S A~ ':\‘ '/\_. M‘“ o
{
A NN
4
My L=t O



But det® = deta' det x", which gives (I).
(II) The support of Div(E) is contained in the support of E.

If X is nornal, the supports coincide at points of depth 1,

Proof: The first statement follows from the local
character of D and the fact that Div(ﬁ%) is the identity element
in the group of Cartier Divisors, If xe€X is of depth 1 and X
is noraal, then.G; is a discrete valuation ring. We nay again
find a free resolution

. ~ _ o= .

Cj—* Eb)‘\ - tol)[ +e - ¢
(by the Auslander-Buchsbaun theoren).
where the &jxare of finite and equal rank, Since Uy is
principal we have that € = O if and only if detX is a unit.
Bbki. Alg. Ch.VIT €4, No.5, prop.4,
(ITI)Let€ be a coherent sheaf on X and £:Y -» X a morphisa of
noetherian schenes such that

Tor %% (£,00 ,F_) =0

Tg Uy Sx) T

for all g>0, ye¥, x = £(y).
o <

Then: Div (f*t) = f* Div(t ),

assuning bot%%%nd f*fsatisfy‘(i), (ii) above, (The above

condition holds, e.g. if f is a flat corphisn).

Proof: Straightforward vanishinz of the above Torg's
is precisely what is necessary to ensure that the inverse image
of a projective resolution of ifover(Z is a projective resolution
of £*E& over 0}. This ailows us to conpute local equations

l+28
for £* ¢,



(M Let D be a Cartier Divisor and forn the exact sequence
Q- Q*(D) *(fx'*(fD - 0,
Then Div (/f) = D.

Proof: imnediate,

() Let £ : X > Y be a faithfully flat, finite morphism
of neetherian schenesg. Suppose¢Ecoherent on X and satisfies
(i); (ii) above. Then

fy Div (%) = Div (£, £).
Proof: Check it again at 2 point x of depth 1. Take a free
resolution |

Ao o
0 *Ei,xﬁLb,x T bx = 0

Let y = f(x).
- Since T is finite and faithfully flat, the natural homo-

norphisu f_ = G — & is an inclusion (SGA)]Y} proposition 2.6),
and 4% is a free Q%-module of finite rank,

. o
A local equation for f, Div ( &) at x nay be given by

Netx/ g (d& X ).

. T D4
where, ifEf;?%, Néé/{é (£) is defired to be the determinént
of the matrix (with cbefficienta in i@) which describes sulti-~

J

plication by & in . (Here one uses that g is a free g -
module of finite rank)

Since (f*i:)x is just 1;, regarded as an %&—aodule, ta-e

. R ‘T :
the same resolution for (f, C)x as =2bove, only regarded
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as on gfresolution. A loczal equation for Div(f*fb)at y

nay then be given by
det€§ ().
We are reduced to denonstrating 2an identity in the theory of

deterninants,

~r

Proposition {B; A{ :

Let B be a comnautative finite dimensional A-algebra (free
as a module over A). Let W{be any B-endonorphism of some free
B-module E of rank g Then:

N cdetB(T) = deﬁA (7).

B/A
The deterninants here refer to the expression of T as a
square natrix over B or over A upon choice of a free B or A

basis of E respectively,

Proof: First a series of reductions. It suffices to prove
ﬁB,AE for ~
1. A an intezrz2l douain
2., A an algetraically closed field
3. and where B possesses 2 unigque axinal
idenl,

Proof of 1. Let 4 be an, intezral domcin and ™: A —» A a sul-

jective howmouorphisu, (i.e. take 4 = @2 [fa.{a,t Al 2nd

‘f(ta)»z a.) HGxpress B via its "structural constants"



B:A(‘}E,], s 0y Y/ .
(f304) 3,5 = 5.4 v

£k
where f X-l __J - k glJ X q A( 1,00, )
Choose 11ft1nos)l‘ s €A of the gijfnd deflne
B-' = A(Xi,...X )/ .
(f j i'j =1;-..,Y
g T F s
where fij = 2(12_(3 - % ’ij X‘k

B is 2 free module over A generated by the images ofiX !
and B = B\Xi.
By the universzl nature of the determinant forcula we have:
Lenna 1 (i) -~ deth’(f) = det 3 (r1")
(i1) © det ,/(T) = det , (= 1)
(111) = Nppy (V) =N,y (~ b')
for T'any square matrix over B’ ana v« B,
We have therefore shown QB’, A’_§ implies {B,A}, and con-
sequently (1). |

Proof of 2: Inbed the integral domain A in an algebralcally

closed fleldK. Then [BCXA K, X Ar implies ;B,nf.

Proof of 3: Supnose B decomposes over A, B = B,{fQBZ,

corresponding to the idenpotent, decomposition 1 =;1(3}§.
Lenma 2: (i) det., (T)=det € Trr det, (& T)
—_— B B1 B

(i1) det, (T) = det, ¢ I)-det , (1)
where ¢, .T is regarded as a matrix over Bj and :

(iii) g /u (b) = Npy, (,{:;b)°NBQ/A(1»'.zb)



Proof: (1) e.g. Use the formula for the determinant.
. = - ( -~ .'-"'-;
(i1) T = (€, T *:£5I) o (5, I(+ET)
and det, (%, TQC)éZI) = det , (£, T).
The best basis (to see this last fact) is one which

aninates the splitting E = & E+LE,

(iii) The "matrix" be B over A is the diagonal matrix

of blocks . s
(O €, b

LennaZshows that %ﬁ, A? and %BZ,A% imply XB,A} « Since A is
an algebraically closed field, we are led to the local ring :
situation, gq.e.d.

Now let. « C B be the unique maxinmal ideal, AB; B/m:: A,

and choonse a basis
‘{1 = bO’ b. ® v o0 b(‘:, < B

as vector space over A, such that reading from right to left they
forn bases for the successive powers mjc.B in order of decreasing
Je

Represent the free nodule E as VﬂﬁAB where V is a vector
space over 4 of dirmension gq,and consider the sequence of

subspaces EJ b. V& b3+1 @'...{X.b(Y forning a decrezsing

J
sequence of vector spaces over 4,
fol = & (E =E
L{ r+1 C LI R ) [ o .

The B-honomnorphisnm T:E-E will leave the above flag invariant

and if we convene that
¥ :BB/nTA < B

be defined on nmatrices co-ordinate-wise, we have that T induces
b
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the patrix §(T) on any 'Ej/Ej+1 (3=0y vesy 1)
Thus we have:
| (1)  det, (T) ={det, S(T)f r+1
On the other hand
(11) Ty, (o) =¥(p) ™
since a matrix for b over A nay be given as triangular, with
¥ (b) =2long the diagonal; _
| (1i1) ddety (T) = det, (1)
since ¥ is 2 ring honomorphisn.
Proposition {B;Ai therefore follows and consequently V.,
Converting terminology fron noetherian schemes to
noetherian rings; A we consider modules M of finite type over A

satisfying:

(i) M is a torsion module over . (i;e. its associated
sheaf ﬁ?over Spec i is torsion); This condition
says that M) q (4) = {nghere q (A) is the total
quotient ring of A (See [#-3] , Vol.I, Ch.I, 19,
Theoren 17)

(ii) M_ is of finite projective dimension over Ap for
211l prime idenls p of 4.

A_Cartier divisor of X = Spec 4 (i.e. a non-vanishinrg section
in (X, (:/ti*)) ray be identified with an element of A% (a

non-zero element of &) medulo the group g units of 4, 1T (4A).
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Thus, if M satisfies (i), (ii) above, define
det, (M) e A°/0 (A)
to be the Cartier Divisor, Div (ﬁﬁ.
We may, also; if we wish, interpret detA (11) as a non-zero

principal ideal of A,

Definition: The module M has a deterninant (over A) if M is of

finite type over A and satisfies (i), (ii) above.

For convenience; we restate an affine corollary of property
V.
¥ affiné: Suppose i:4-B is a ring homonorphism where B is a
free A-module of finite type. Then the norm NB/A : B2 A is
defined, and we have the following relation:

det, (M) = Ng/y detg (M),

where it is understood that if the right-hand side is defined
it follows that the left is also defined and the abcve

equality results,
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2, Modules over F {TJ .

F will denote either the integers, <% , or the integers

localized at a fixed priome p,.
Zip) = ( a/p ' a, b «. Z, (p, b) =1

L
Set A=F [WD =P (t, +7'). Then F is principal and has the

property that for any ~odule X of finite type over F, Tor (X)
is finite. The natural inclusion ACAL is flat. L, module M
over A may be regarded as a nodule over F with a gi?en auto-

uorphism.«77 M —» M which describes the operation of t<¢ F Eﬁj

on M, U/is called the fundanental automorphisn of the nodule M,

Since Spec 4 is non-singular its local rings are =21l regular
and we have:

Proposition 1: Any A-podule M of finite type satisfies ¢on—

dition (ii) of §1. Thus M has a deterninant if and only if M
is a torsion module over A.
EEQQQ‘ This follows frop the criterion of Serre for
regularity of a local ring (ThR. 3,§ 5; (16).

We will need an elementary consequence of the noetherian de-

composition theoren.

Lenna 3: Any ideal {4 < L wnay be (uniquely) expressed
as | = (£) n 070

where (f) is the smallest principal ideal containing f%and
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and Supp (A/@b) contains only points in Spec A of depth 2.
The neotherian decomposition theorem will factor & into
primary ideals associated to primes of depth 1 and 2. Let
. denote the intersection of all the prinary ideals which occur
in the decomposition and are associated to primes of depth 2.
Recall that a pricme ideal of depth 1 is nininal, hence principal,
since A is a unique factorization donmain ( Z-%4), Ch IV §14 top
page 238). Consequently all primary ideals associated to prines
of depth 1 are principal (loc. cit., Chizi;.§9; Note of p.155).
We may then write
= (£,"N 0 Lo a (g M A Yo
where the fi are non-associated irreducible elenents. Sinee
A is a Unique Factorization Domain:
(M) e n(g,™) = (1M L) = ().
Finally, suppose. ©'{. (g) for some principal ideal g,  Then
the associated prinmes to (g) in its noetherian decoaposition nust

be among the (fi) i = 1, e oy S.

Thus
.ff "‘“‘
(g) - L= (fl ')
Suppose sone exponent, say El.1 is greater than n,. Then

contradicting uniqueness of the primary decoaposition of ot

Therefore m; & n;.  We conclude that (f) < (g). q.e.d.



Proposition 2: Let M = 4/cn Ive a determinant 4 (1), Then

(A(t) is the smallest principal ideal containing (o,

By Lenma 3, deconpose

G o= (f) n Wo.

Proof:

Then proposition 2 will follow fronm the assertion:
det (4/(f), @o) = det (A/(f) ).

But to check this it suffices to check it only at points x of
’l

depth 1. 4%t any such point x, however, Yo, = A

Let X be the collection of finite A=modules.,

Proposition 3: Let M have a determinant over ., Then detA (M)

is a unit if and only if M & . (det, is therefors = ) -
invariant of nodules)

Proof: Spec A is normal. By property (IZ, gf‘$1,

det, (M) is a unit if and only if supp M consists 5273ﬁly'in

points of depth 2, Proposition 3 then follows fri: < anpepns 1;

2 of Bourbaki, Alg.Comn, Ch v f1, no.4, after one “iicryes tpat

any prime of depth 2 in A has finite residue fielg,
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3. lonic Modules

Again let F denote either;Z'; or the integers localiged

2t Py Z(p)e

Let A=F 1] =F (%, t'1,jAY = 4/(1-tY) and let M be an A-

nodule possessing a deterainant. The determinant of M may then

be interpreted as a polynomial
a(t) e FCTW2Y/ {u(F) +7
ne¢ & . This may be normalized (by nultiplication with a
suitayple power of t, fo achieve 2 non-zero constant term and no

negative exponents).

Definition: The A-nodule M is monic if A(t) is a wonic

polynonical in F[t) whose constant term is a unit.

(This anounts to the requirenent that A is nonic when expressed
both in t and t7!)

If M is a aonic A-uodule, then M is of finite

Theoren 1:

type over F.

Proof:

Suppoée M aonogenic, M = FLwl /ﬂl . Then O8.(det M) by

and we have the exact sequence:

0~ (8 (t) )/ N ->M->4/(a(t)) -0

Lemna 4: Consider an exact sequence of .i-riodules
0 -~ Mo - M1 - Mé.ﬁ 0

If M1 is a torsion module of finite type, so zre MO and MZ’

By induction on the number of generators of M.

?
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Proof: The finite type statement follows triviaily

for Mé and for Mo by noetherian-ness of A, The torsion state-
nent follows because q(4) is A-flat (A*beingran integral domain).

Consequently, after Proposition.1,§2’([3(t»/<31 has a

determinant and:

det M = det (&/ (a (%) ). det (& (%)) oc ).
by property I of‘€1. By Proposition 2,82, det (4/(a (t) ) =
O (%) and we have det (A(t)/er ) =1; i.e. &(t)/or  is finite
after Proposition 3;§t2. Therefore; in the light of the exact

sequence (*), to show A/ of finite type over F it suffices to

show:
( 4/(A(t)) is of finite type over F.

Lenma 5: Let S = deg A(t) and consider the sub-nodule

M, < A/(a (t)) over F, generated by the basis {1, Ty eeey

Since A (t) is monic, after wultiplication by a unit we may

2 .

write it as 51
A(t) = +5 —é ®. 4t
i=o0 L
Now assume by induction that
tj ¢ MO " for 0 Jj & N -1, Since
N =%§1'_ t(N_S) + i
. i

in £/( A(t)), we get t € M_ for all N, O. Using nonicity of

Ll(t—1) we get Ve M, for N g‘O. Consequently, M = L/ A (t))

q-e'dO

We have thus proved the theorem for umonogenic nonic nodules
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for

Now assuae it proved/ﬁonic modules generated over A by

(y-1) elenents or less, Let M be generated over A by ¥ elenents

and let M, < M be the sub-nmodule generated by all but the last.

We have an exact sequence:
(%) 0-M —-M- MM -0, with M/M_ nonogenic.
By lemma4,all three rodules have deterainants, ~nd

det M = det M_ . det (M/Mo)

so they are all oonic. Both Mo and M/Mo are of finite type over

F; M, by our inductive assunptions; M/Mo since it is nonic

and monogenic. It follows fron (*%) that M is of finite type -

over F,

If M is nonic and of projective diunension 1,
Its fund-

Theoren 2.

then M is free over F of finite rank 8 = deg 4(%).
anental avtonorphisn y nay then be identified (up to equivalence

over F) with a & x 6 natrix over F, whose characteristic poly-

noninal may be identified with A(t).

Proof: The resolution:

-+ L, 0

0~ A = v

i e e P Y ’ l"til/ -
yields: 0 - Tory (i, M) » M~ M= M ;A O

which allows us to identify:

TOI'{]L (tllv, M) =

inension 1, we also have a

m

Since M is of projective @

resolution 0 - Piﬁ Poﬂ M- 0



yieldings: 0~ Tor‘;‘ (M,4.) > RE 4,
But P1 éc'j;-Aw is torsion-free over F. Using conoutatively of 'J.‘or1
we get that Mn"'is torsion free over F. Since U is of finite
| type; its torsion nodule Tor (M)c M is finite. Moreover, the
fundanental sutonorphisn ¥ nust preserve Tor (H). Thus y
determines an autonorphism ¥ of Tor (M). But Tor (M) being a
finite group; its group G of automorphisns is again finite of
order; say; ge Thus :?g =1. Teking v = &, We see that Yy'is
the identity on Tor (M). Therefore: |

Tor (M) M~ 7o
Since M 7 ¥ is torsion-free, it follows thatd

Tor (M) = O.
Since F is principal; M is -therefore free over F of finite rank.

Consider the following sequence

o-MEF (M1 - ME F (7} M0
L =
where ¥, 4/ are the F LW’] hononorphisns deterained as follows:

y (me:tn) = Yn ()
{

(X (a@t) = aaot®t - y(n) @ "
The sequence 1S exact since ker Wis generated as a F‘[W—j-module‘

by elenments of forn (o t - y(n) (xX21). It is a free resolution
of finite type since M is free over F (of finite type).

Thus we nay conpute A(%) frow this resolution; and the full
statement of the theorem follows.

Note that we have also:
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Proposition 4: Let M be of projective dinension 1, and possess

a determinant over A,
Then:
A .
Tory; (M, A= M "7

is a sub-nodule of sa free nodule over A s
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$4. The Alexander Polynonial

Let Ktt.S3 be a polygonal one-sphere knot and consider M the
bounded complenmentary nanifold, We nay take M as a connected
finite simplicial coumplex, hence a connected finite CW-complei.
In the usual nanner, after a series of elementary contractions of
M into its 2-skeleton, and collapsing a naxinal subtree to a
single vertex, we nay represént M (up to houotopy type) by a
2-dinensional & finite CW-conplex F, possessing a single O-cell.

Denote the infinite cyclic group, H, (M,Z) by 7, and choose
a generator t ¢ 77. If W is the paximal connecved abelian
covering bundle of M, ’Ta%ts fre'ely on M and M = M~/7f ..

Let us repl=ace i/?bjr/the naxinal connected abelian covering
bundle of F. T inherits a CW-structure froa F, and the group T
pernutes the cells of F (principally). Let C; aJdenote the chain
conplexes (integer coefficients) associated to the CW-structures
F,F The action of the group ;'T'a.llows us to consider C"'as a chain
conplex of free ’2— cr -r.:odules; of finite rank. Conséquently,
(G) is 2 module of finite type over A= Z Lﬂ:fl

H, (M) = H,

Evidently H, (ﬁ), 28 an abelian group is the abelianization

1

of the commutater subgroup of the knot group 77;(M).
The nain theorea concerning the structure of H1 (LE) as a
A —podule is the following:
Theoren 3: (i) H, (M) is a torsion nodule of finite type

over A .
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(ii) It is of projective dinension 1.
(iii) Its deterninant A(t) is the classical
Alexander Polynonial of the knot K.
(iv) The natural nap p,: M-S, (where S,- is
the branched cyclic covering of the knot K
of ordery; See,§5) induces an isomorphisn,
H, (D) &5, A o Hy (8,)
as /\Y-modulegr’;/here Ny =N(1-tY).
Renarks: (1) Assertion (iv) will be proved in §5, (It
is exactly prdposition 5), where branched cyclic
coverimgs are discussed.
(2) Theorenm 3 suggests the following definitions
(in the light of9"3).
The norn of a knot K is the constant tern of its Alexander
Polynonial 4 (t).
Norn (K) = A(0) ¢ Z/ll 1

1!
f

A knot is nonic if its norm is a unit.
Theoren 4: Let K be & knot and p a priume which does not
divide © {. T M) (%) is a free ¢

ivide the norn of I hen H, (M)(%Zé7(p) is a free nodule of
finite rank over /,)  Its rank is equal to the degree & = 2g

£ .

of the Alexander Polynoaial, A(t) of K. A(t) is the characteristic

polynonial of the fundamental autounorphisn of H, (ﬁ) (p) =

1 S £ py
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Theoren 5: If K is oonic, then H, (Ea is free abelian
of rank equal to & = 2g. The fundanental autonorphisn y nay
then be regarded (up to integral equivalence) as a catrix:
Ye S (8,2Z)

whose charactefistic polynonial is the Llexander Polynowiial of
K.
Note: For wonic knots; then; one uight try to delve
into the second comnutation group by considering ﬂi the naxinal
abelian unranified covering bundle over'ii Then H1 €E3 is
2 nodule of finite type over the integralkgroup ring of H1(ﬁ3
which is just:

A® = ZZ{EMQ‘i e, X %y ]
For knots-of-rotation, H, (ﬁ) is free of rank @,) over this

ring. Can one expect & sinilar rank (over the generic point of

Spec ( AJ) ) for all nonic knots?

Proof of Theorems 4 and 5: Letting F stand for either g;?)o, 7y
in either circunstance we have that H1 (M)(%yF is monic, as a
nodule over F [ 1, This follows because:
(2) The inclusion &« 7] =2 Flrmhs flat.
Consequently nroperty IIl of &1 applies;yielaing
dety g (H, (ﬁ')(x2 F) =i A(t).
(b) A(t) is a synnetric polynonizl, Con-
sequently since i A(0) is a unit in F, so is the

leading coefficient.



23

Theoren 3 gives us that it is of projective dimension 1,

hence Theoren 2 of §3 applies, q.e.d.

L special case of a pnonic knot is one for which the zeroes

of the Alexander Polynonial are of %bsoliﬁe value 1. - (One
wi

It/Tollow fron Theoren 22nd

m%y call then cyclotonic knots) .

duality
that the fundanental autonorphisn is periodic in this case i.e.

Y =1 for SOmE y) o This "aninates" the phenonenon of period-

icity tabulated in (4).
Proof of Theoren 33 We first prove (i):
et B : Z (MY —~ Q (%) denote the inbedding of Z (77D

in its field of fractions. The assertion is that

H, (M) Xy Q(t) =0
Z’£17

Lemna 6 ] (Z%FQ (t) is acyclic
Z (7] .
Proof: see ( (13), Lenna 4 and page 145). Thenren

3 will then follow fron the general assertlon

Lenna 7: Let C pe a free chain couplex over A= Z (7] ,

such that Hj (c)= Z _(i.e. C is connected).  Lety: = B be a
ring hononorphisti. '
Then the natural nap
o L v
i, )X, 3 + H (CXEF)
is injective.

Ak
Proof: Since C 18 free, we uay use the spectral sequence:

(See theoren 5.5.1 page 102, (6) )
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24
E = T r H (C), B) 3 H cCX)B
2 - morh (1 (&, B 3w, C@D.
The natural nmap 1 factors.
2
‘%2,0
b 2 » /-,1’
§8'1 — H, (C)XiB
~ \ioo -~
o1 - H (CEP)

and the vertical sequence is exact a2t the point E§'1. Lenaa 7
9

will follow if Eg 0 = O
. 2 _ —~ -
But:- E; o = Tor2 c), B) = Torz(Z B) o
the niddle isomorphism cones by hypothesis zand the last since Z.

has projective dinmension 1 over A= 77 (71, q.e.d.

Proof of (ii) and (iii):

Let us denote the cells of F of dimension q by CJ
(j = 1,...( ). Supposeg , = u, Then since So 1 and the euler
characteristic of F is zero, we have: ?1 =n+ 1. Take G} to

be such that TH;1 = (t-1). Co (Conpare (13)) and regnrd the basis:

- o SR 21 3
(‘11 Sl 'l“'" ) (-"M-O—I
as free bases of the A-uodules 02 and 01 respectively. In terns
of these bases, the boundary honomorphisn

f%': 02 - 01

nay be written as an o x © + 1 uatrix with coefficients in A,

(The Alexander Matrix of this presentation.F). |la

Consider the following comautative diagran:



-2 o~
0 € AN20C=>C*~0
/\m/'/\
c | |«
'Z’é—-vc—‘o
-~}
13.

elA1 g &, & ;
Hence j\is the submodule of 01 generated by, C¥ is the free

/\-nodule generated by: C e eee ,Gw' 77 the natural projection
H

and Z1 is the submodule of 1-cycles.

Lenna8: p is an isomorphisa. Consequently H, (M)

adnits the free A-resolution:

*

~/ ~7 ~
_o—»nf»c ~H, (1) = o.

1 . _
Temma 8 will then prove (ii).  Also (iii) will follow, since

the determinant of H, (M) may then be computed froo the

;resolution (%)
aety, {H, (M){ = det x = det ||ailj (%) /| Ll

But-the latter determinant is the classical Alexander Polynomial.

N

(Compare (13) ).

Proof of Ie.nma 8: First
~ g | -
Z1 N {61/\}_ _{O )
be cause 8(:1 A) = A(t-1). C’,‘?, which is zero only if A= O,

: n+1 %
Therefore p is injective. Now let O* =_§)~/Lj_-’1 e Cy o
, L=

51 (c*) € (t-1). ‘6;, we have 51 (c*) = (t~1).7\Q<1) for sone

-~

NeAe Tet c = c* =A Q}. ThencCc %, and p(c) = c*.  Therefore

Since

p is sufjective.
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5. Branched Cyclie Coverings

Let M, be the ,E? cyclic covering bundle over M (i.e. the
bundle associated to the subgroup of Tq(M) which is the universe
inage of 777 ¢ T under the natural map

o~ [, (M), T} - m (M) - F >0
Here 7= ( +"7 ¢ TineZ) ).
Then My nay be "conpleted" to a 'covering space with singularities'
Sy 4 over S3, branched exactly at the knot K. Sy is called the
branched cyclic covering of K, of degreey., See (3), The
Mayer-Vietoris sequence for honology yields the following exact

sequence:

H, (87) »H, () p Hy (S)) =0
Y

1 1 )
where X represents a standard loop in M., "transversal to the

knot K",
The CW-structure F, repfesenting the honotopy type of M
will 1lift to a CW~-structure F;—yielding a free chain conaplex
Cy- over the ring A= ﬁfk]_tv‘) . One has the relation
C, = ‘61@\ Ay
and the natural oaps Pu.v * Mp:?'M give rise to comuutative

diagrans:

Leana 9: H, (Mu.) = Hy (Cu+) TH, (T @, A1d

)

) \! Gl N\II _\"“;Y 'i\Y(q'c.
H.1 (MY) = I-I1 (CY) z:H1 (C(},_C//‘ /\y>

’
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() # () = 1 (0) |
{ D,. [ {514,\ Avix
Hil (M) = H._L\lZC'ixf;\-’\u)
Using the spectral sequence,
| | Tor; (H, ), Ay PHyy (& A
agaln, as in <4, lenna 7, and that E2 0= Torg ZA) = 0, we get
an exact sequence:
0 - H, (M) & AT ¢ (Ose /\;)"Tor1 (H, (c),A) = 0

Using the resolution

ANs: o —-)/\—-)/\—)/\—r 0
(=&

one sees that Tor (H (C),A)) ¢ H, (c) @A,
is the infinite cyeclic subgroup generated by
() & (g tJ) e H (6) @ A

where (L ) is the homology class of C°

Combining exact Sequences, we get:
]

H, (s ) _

’ b Y \"\'yu
N XA .
® - H, (M)@‘g;.Af‘-\,,. - H, (Cx ) 2 Tor1 (H,(C),A)) =0
T~ \}/

Hy (8.)
|
\%
0

where the diagonal arrows are the conposites,

Proposition 5: V. (hence also 1,,) is an isomorphism (which

proves assertion (iv) of Theorem 3, ¢ 4,
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By diagran-chasing, \J)L,ILS an isomorphisn if 1s. Since both
H, (s!) andg Tor (H, (C) A.) are infinite cyclic, it suffices

to show that a generator of H, (s’ ) is sent by Y} to a generator
of Tor1 (H (C) WH By choice of rk;, X)sends a generator

of H, (57) to
Q;L € ’(Z: '.5;@_';\/\\1.‘

The homowmorphisn is the natural "step—ladder" nap of the

double complex EQI\. . That is, if h¢ H, (c @/\u) is a class
E(h) nay be obtained by choosing a cycle z ¢ C Qc»/\Uwhlch

represents h, and ascending the following staircase:

0

—~

!
T_or1 (H y A)
X

X /\ - HJ,@\I\ -+ 0

o 2liny °) ti-e)
1!@ A - C,x AN - HY@& A = oy
. \'( ~ .l/

C1L/,\)-' - CO‘Q_; Ny = Ho'-\’_i,:l\b, - 0
{ v
‘{0 0 0

, ~
{Here H, = H (¢))

Thus, if 7z € CAl Qc A is a class napping onto z we may represent

“(h) by the following class in H ®, N\ ¢

it
Le-r b 1
Thus for z .—_%_ 9 6,1, take

which gives us:
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4s a conplement to Proposition 5, we have:

Proposition 6: For all integers/a, v'the diagrans:
—~ . i \-‘l.(l j - A
H1 (i\l\) 6(:;\ I\'_;,|Y z/( HJ_ (f)l,.(.l r)
y . |
H (R, A, o> N 6sy)

are comautative, where the vertical hononorphisns are induced

fron the natural uaps P-'“'Y ‘ \g,r—~> S, )\/u,r .- /\/m-f ” /\r-

Proof: The ¥ 's are the couposites
Hy (A Ny —> H, COn Av ¥ = H, (M/W) —>Hy Buv)

| | |

. 4 v Y
H, (mbf—\/\ v > Hy (C@\/\ v) =7 Hl('\'v\Y) —7 “1 (s "’>‘

The right-~hand square .is conmutative since it is induced by a
coanutative square of continuous naps. The left-hand square
is conmutative by naturality of the Spectral Sequence from which

it cowmes, and the aiddle square is coumutative by lemna 9.

Corollary 1: The induced hono:xorphisn

Puy H! (\S_q\() — H., (S*)

is always surjective (i.e. for '111‘,“,v). (Compare Th.4 of (4)).

Corollary 2: Hy (M) &0 Z = 3(’, A
)
Proof: Hy (M. Z = H, (51) = C

since S1 is the 3-sphere.

£
Let A~ /\,— denote the surjective nap and set Kyzéa,(t).


















