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Chapter 1

Introduction

Let A be an associative ring spectrum. We will say that A is a Morava K-theory if
it satisfies the following conditions piq and piiq:

piq The homotopy ring π˚A is isomorphic to a Laurent polynomial ring κrt˘1s, where
κ is a perfect field of characteristic p ą 0 and degptq “ 2.

It follows from piq that the cohomology A0pCP8q is (non-canonically) isomorphic
to a power series ring κrress, so that the formal spectrum G0 “ Spf A0pCP8q can be
regarded as a 1-dimensional formal group over κ.

piiq The formal group G0 has finite height (that is, it is not isomorphic to the formal
additive group).

Lubin and Tate have shown that condition piiq implies that the formal group G0
(which is defined over κ) admits a universal deformation G (which is defined over a
complete local ringR with residue field κ). We will refer toR as the Lubin-Tate ring of the
pair pκ,G0q; it is non-canonically isomorphic to a power series ring W pκqrrv1, . . . , vn´1ss.
Applying the Landweber exact functor theorem to the pair pR,Gq, one deduces that
there is an essentially unique cohomology theory E satisfying the following conditions:

pi1q The homotopy ring π˚E is isomorphic to a Laurent polynomial ring Rrt˘1s.

pii1q The formal spectrum Spf E0pCP8q is isomorphic to G (as a formal group over
R).

We then have the following result:
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Theorem 1.0.1 (Goerss-Hopkins-Miller). The cohomology theory E is (representable
by) a commutative ring spectrum, which is unique up to a contractible space of choices
and depends functorially on the pair pκ,G0q.

We will refer to the commutative ring spectrum E of Theorem 1.0.1 as the Lubin-Tate
spectrum associated to A (it is also commonly referred to as Morava E-theory). One
can show that there is an essentially unique E-algebra structure on the ring spectrum
A which is compatible with the identification between G0 and the special fiber of G.
For many purposes, it is useful to think of the Morava K-theory A as the “residue field”
of the Lubin-Tate spectrum E (in the same way that κ » π0A is the residue field of the
Lubin-Tate ring R » π0E). However, this heuristic has the potential to be misleading,
for two (related) reasons:

paq Morava K-theories A can never be promoted to commutative ring spectra (in
fact, if the field κ has characteristic 2, Morava K-theories are not even homotopy
commutative).

pbq As an associative ring spectrum, the Morava K-theory A cannot be recovered
from the Lubin-Tate spectrum E.

To elaborate on pbq, it is useful to introduce some terminology.

Definition 1.0.2. Let E be a Lubin-Tate spectrum, so that R “ π0E is a complete
regular local ring with maximal ideal m Ď R. We will say that an E-algebra A is atomic
if the unit map E Ñ A induces an isomorphism pπ˚Eq{mpπ˚Eq » π˚A.

If A is a Morava K-theory and E is its associated Lubin-Tate spectrum, then A can
be regarded as an atomic E-algebra. Conversely, if E is a Lubin-Tate spectrum and
A is an atomic E-algebra, then A is a Morava K-theory whose associated Lubin-Tate
spectrum can be identified with E. Using Definition 1.0.2, we can rephrase paq and pbq
as follows:

pa1q If E is a Lubin-Tate spectrum, then atomic E-algebras are never commutative.

pb1q If E is a Lubin-Tate spectrum, then not all atomic E-algebras are equivalent (at
least as E-algebras; one can show that they are all equivalent as E-modules).

Motivated by pb1q, we ask the following:

Question 1.0.3. Let E be a Lubin-Tate spectrum. Can one classify the atomic
E-algebras, up to equivalence?
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Remark 1.0.4. Question 1.0.3 is essentially equivalent to the problem of classifying
Morava K-theories up to equivalence as associative ring spectra. Note that the datum of
a Morava K-theory is equivalent to the data of a triple pκ,G0, Aq, where κ is a perfect
field of characteristic p ą 0, G0 is a one-dimensional formal group of finite height over
κ, and A is an atomic algebra over the Lubin-Tate spectrum of the pair pκ,G0q.

Before describing our approach to Question 1.0.3, let us consider a similar problem
in a more familiar setting.

Definition 1.0.5. Let K be a field. We will say that a K-algebra A is an Azumaya
algebra if 0 ă dimKpAq ă 8 and the actions of A on itself by left and right multiplication
induce an isomorphism AbK Aop Ñ EndKpAq.

We say that Azumaya algebras A and B are Morita equivalent if the tensor product
A bK Bop is isomorphic to a matrix ring EndKpV q, for some vector space V over K.
We let BrpKq denote the set of Morita equivalence classes of Azumaya algebras over K.
If A is an Azumaya algebra over K, we let rAs P BrpKq denote the equivalence class of
A. We refer to BrpKq as the Brauer group of K.

The essential features of Definition 1.0.5 can be summarized as follows:

piq For any field K, the set BrpKq can be equipped with the structure of an abelian
group, whose addition law satisfies the formulae

rAs ` rBs “ rAbK Bs 0 “ rKs ´ rAs “ rAops.

piiq Let D be a central division algebra over K: that is, a finite-dimensional K-algebra
whose center is K in which every nonzero element is invertible. Then D is an
Azumaya algebra over K.

piiiq The construction D ÞÑ rDs induces a bijection

tCentral division algebras over Ku{Isomorphism Ñ BrpKq.

It follows from piq, piiq and piiiq that the problem of classifying central algebras
over K (up to isomorphism) has more structure than one might naively expect: the
collection of isomorphism classes has the structure of an abelian group. We would like
to apply similar ideas to the analysis of Question 1.0.3: roughly speaking, we want to
think of atomic E-algebras as analogous to “division algebras” over E, and organize
them into some sort of Brauer group.

Definition 1.0.6. Let E be a Lubin-Tate spectrum. We will say that an E-algebra A
is an Azumaya algebra if it is nonzero, dualizable as an E-module spectrum, and the
natural map AbE A

op Ñ EndEpAq is a homotopy equivalence.
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We say that Azumaya algebras A and B are Morita equivalent if the relative smash
product AbE Bop is equivalent to EndEpV q for some dualizable E-module V . We let
BrpEq denote the set of Morita equivalence classes of Azumaya algebras over E. We
will refer to BrpEq as the Brauer group of E.

Remark 1.0.7. The Brauer group BrpEq was introduced by Baker, Richter and Szymik
in [3]. For atomic E-algebras, the Azumaya condition has appeared in the work in
Angeltveit ([2]).

As the terminology suggests, the Brauer group BrpEq can be regarded as an (abelian)
group: just as in classical algebra, it comes equipped with an addition law which satisfies
the formulae

rAs ` rBs “ rAbE Bs 0 “ rEs ´ rAs “ rAops.

However, the homotopy-theoretic analogues of piiq and piiiq are not as strong:

p1q An atomic E-algebra A need not be an Azumaya algebra. For example, if the
residue field κ has characteristic different from 2, then there exist atomic E-algebras
which are homotopy commutative; such algebras are never Azumaya.

p2q Not every Azumaya algebra over E is Morita equivalent to an atomic E-algebra.
For example, the Lubin-Tate spectrum E itself is not Morita equivalent to an
atomic E-algebra.

Because of p1q, we cannot completely rephrase Question 1.0.3 in terms of the Brauer
group BrpEq. We therefore restrict our attention to a slightly less ambitious problem:

Question 1.0.8. Let E be a Lubin-Tate spectrum. Can one classify the atomic
Azumaya algebras over E, up to equivalence?

It is not difficult to show that atomic Azumaya algebras are equivalent (as E-
algebras) if and only if they are Morita equivalent (Proposition 10.1.1). It follows that
the construction A ÞÑ rAs induces a monomorphism of sets

θ : tAtomic Azumaya algebras over Eu{Equivalence ãÑ BrpEq.

Consequently, we can break Question 1.0.8 into two parts:

Question 1.0.9. Describe the Brauer group BrpEq of a Lubin-Tate spectrum E.

Question 1.0.10. Describe the image of the map θ (as a subset of BrpEq).

Our primary goal in this paper is to address Questions 1.0.9 and 1.0.10. For simplicity,
let us assume that the field κ has characteristic different from 2. Our main results can
be summarized as follows:
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Theorem 1.0.11. Let E be a Lubin-Tate spectrum, let m denote the maximal ideal
in the Lubin-Tate ring R “ π0E, and assume that the residue field κ “ R{m has
characteristic ‰ 2. Then the Brauer group BrpEq is isomorphic to a direct product
BWpκq ˆ Br1pEq, where BWpκq is the Brauer-Wall group of κ (see §2.8) and Br1pEq is
the inverse limit of a tower of abelian groups

¨ ¨ ¨ Ñ Br14 Ñ Br13 Ñ Br12
ρ2
ÝÑ Br11 Ñ Br10

where:

paq The group Br10 is isomorphic to m2{m3.

pbq For k ą 0, the transition map Br1k Ñ Br1k´1 fits into a short exact sequence of
abelian groups

0 Ñ mk`2{mk`3 Ñ Br1k Ñ Br1k´1 Ñ 0.

pcq Let x be an element of BrpEq having image x1 P BWpκq and x2 P Br0 » m2{m3.
Let us identify x2 with a quadratic form q on the Zariski tangent space pm{m2q_.
Then x is representable by an atomic Azumaya algebra over E if and only if the
quadratic form q is nondegenerate and x1 is represented by the Clifford algebra Clq
(as an element of the Brauer-Wall group BWpκq.

Warning 1.0.12. In the statement of Theorem 1.0.11, the projection map BrpEq Ñ
BWpκq and the isomorphisms

kerpBr1k Ñ Br1k´1q » mk`2{mk`3

are not quite canonical: they depend on choosing a nonzero element of pπ2Eq{mpπ2Eq.
We refer the reader to the body of this paper for coordinate-independent statements
(and for extensions to the case where κ has characteristic 2).

Let us now summarize our approach to Theorem 1.0.11. Our first goal is to give a
precise definition of the Brauer group BrpEq. In §2, we associate a Brauer group BrpCq
to a symmetric monoidal 8-category C (Definition 2.3.1). This notion simultaneously
generalizes the classical Brauer group of a field K (obtained by taking C to be the
category VectK of vector spaces over K), the classical Brauer-Wall group of a field K
(obtained by taking C to be the category of Z{2Z-graded vector spaces over K), and
the Brauer group BrpEq of interest to us in this paper (obtained by taking C to be the
8-category Modloc

E of Kpnq-local E-module spectra). We adopt this general point of
view not merely for the sake of generality, but in service of proving Theorem 1.0.11.
Theorem 1.0.11 implies the existence of an inverse limit diagram of abelian groups

BrpEq Ñ ¨ ¨ ¨Br4 Ñ Br3 Ñ Br2 Ñ Br1 Ñ Br0,
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where Brk “ BWpκq ˆ Br1k. We will see that every term in this diagram can be
conveniently realized as the Brauer group of a suitable symmetric monoidal 8-category,
and every map in the diagram is obtained by functoriality.

In §4 we introduce an 8-category SynE which we refer to as the 8-category of
synthetic E-modules. Our definition of the8-category SynE is inspired by the “resolution
model category” technique introduced by Dwyer-Kan-Stover. The 8-category SynE is
equipped with a fully faithful symmetric monoidal embedding Modloc

E ãÑ SynE . The
essential image of this embedding contains all dualizable objects of SynE and therefore
induces an isomorphism of Brauer groups BrpEq “ BrpModloc

E q Ñ BrpSynEq. The unit
object 1 P SynE comes equipped with a Postnikov filtration

¨ ¨ ¨ Ñ 1ď4 Ñ 1ď3 Ñ 1ď2 Ñ 1ď1 Ñ 1ď0,

and the abelian groups Brk described above can be realized as the Brauer groups of the
8-categories Syn1ďk “ Mod1ďkpSynEq.

To understand the group Br0, we need to analyze the heart Syn♥
E of the 8-category

SynE . This is an abelian category, which we will refer to as the category of Milnor
modules. In §6, we will carry out a detailed analysis of the category Syn♥

E . Our main
result is that, if the field κ has characteristic different from 2, then there is a symmetric
monoidal equivalence of Syn♥

E with the category of Z{2Z-graded modules over the
exterior algebra

Ź˚
pm{m2q_ (Proposition 6.9.1). Using this equivalence together with

a purely algebraic analysis (which we carry out in §5), we obtain a (not quite canonical)
isomorphism of abelian groups Br0 » BWpκq ˆm2{m3 (Remark 6.9.4).

In §8, we prove the bulk of Theorem 1.0.11 by establishing that the canonical map
BrpEq Ñ lim

ÐÝ
Brk is an isomorphism and analyzing the transition maps Brk Ñ Brk´1 (see

Theorem 8.0.5). To carry this out, we will need to understand the relationship between
(Azumaya) algebras over 1ďk and (Azumaya) algebras over 1ďk´1 in the 8-category
SynE of synthetic E-modules. This is a deformation-theoretic problem which can be
reduced to the calculation of certain Hochschild cohomology groups, which we compute
in §7.

In §10, we turn to the study of atomic E-algebras. In particular, we prove that
atomic E-algebras are equivalent if and only if they are Morita equivalent (Proposition
10.1.1) and explain how the classification of atomic E-algebras relates to the algebraic
analysis of §6 and the obstruction theory of §8. We then combine these results to prove
part pcq of Theorem 1.0.11 (see Theorem 10.3.1).

To complete the proof of Theorem 1.0.11, it will suffice to show that the composite
map

BrpEq Ñ Br0 » BWpκq ˆm2{m3 Ñ BWpκq

admits a section. We will prove this in §9 by constructing a subgroup Br5pEq Ď BrpEq
which maps isomorphically to the Brauer-Wall group BWpκq (see Theorem 9.3.1).
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Concretely, the subgroup Br5pEq will consist of those Brauer classes which can be
represented by an Azumaya algebra A for which π˚A is a free module over π˚pEq.

Remark 1.0.13. Theorem 1.0.11 does not provide a completely satisfying answer to
Question 1.0.9: it computes the Brauer group BrpEq only up to filtration (thus giving a
rough sense of how large it is), but does not describe the extensions which appear. We
will return to this problem in a sequel to this paper.
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Chapter 2

Brauer Groups

In this section, we define the Brauer group BrpCq of a symmetric monoidal8-category
C (Definition 2.3.1) and discuss several examples.

2.1 Morita Equivalence

Throughout this section, we fix a symmetric monoidal 8-category C satisfying the
following condition:

p˚q The 8-category C admits geometric realizations of simplicial objects, and the
tensor product functor b : Cˆ C Ñ C preserves geometric realizations of simplicial
objects.

Definition 2.1.1. Let A and B be associative algebra objects of C. We will say that
A and B are Morita equivalent if there exists a C-linear equivalence LModApCq »
LModBpCq.

Our first goal is to characterize those algebras A P AlgpCq which are Morita trivial:
that is, which are Morita equivalent to the unit object 1 P AlgpCq.

Definition 2.1.2. Let M be an object of C. We will say that M is full if the construction
X ÞÑM bX determines a conservative functor from C to itself.

Proposition 2.1.3. Let A be an associative algebra object of C and let M be a left
A-module, so that the construction pX P Cq ÞÑ pM b X P LModApCqq determines a
functor T : C Ñ LModApCq. Then T is an equivalence of 8-categories if and only if the
following conditions are satisfied:

piq The object M is dualizable in C.
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piiq The left action of A on M induces an equivalence A » EndpMq.

piiiq The object M is full (Definition 2.1.2).

Corollary 2.1.4. Let A be an associative algebra object of C. The following conditions
are equivalent:

paq The algebra A is Morita equivalent to the unit algebra 1 P AlgpCq.

pbq There exists an equivalence A » EndpMq, where M P C is full and dualizable.

Corollary 2.1.5. Let M and N be full dualizable objects of C, and suppose that there
exists an equivalence α : EndpMq » EndpNq in AlgpCq. Then there exists an invertible
object L P C and an equivalence u : LbM » N such that α factors as a composition
EndpMq » EndpLbMq u

ÝÑ EndpNq.

Proof. Using Proposition 2.1.3, we obtain a commutative diagram of C-linear equiva-
lences

C

Nb‚
��

F // C

Mb‚
��

LModEndpNqpCq // LModEndpMqpCq,

where the bottom horizontal map is given by restriction of scalars along α. We conclude
by observing that F is given by tensor product with an object L P C, which is invertible
by virtue of the fact that F is an equivalence.

Proof of Proposition 2.1.3. Assume first that T is an equivalence; we will show that
conditions piq, piiq and piiiq are satisfied. We begin with condition piq. Using the
essential surjectivity of T to choose equivalence of left A-modules A »M bN “ T pNq,
for some object N P C. Let c : 1 ÑM bN be the composition of this equivalence with
the unit map 1 Ñ A. The action of A on M determines a morphism of left A-modules

T pN bMq » T pNq bM » AbM ÑM “ T p1q.

Since T is full, we can assume that this map has the form T peq, for some morphism
e : N bM Ñ 1 in the 8-category C. We claim that e and c determine a duality between
M and N : that is, that the composite maps

α : M » 1bM cbid
ÝÝÝÑM bN bM

idbe
ÝÝÝÑM b 1 »M

β : N » N b 1 idbc
ÝÝÝÑ N bM bN

ebid
ÝÝÝÑ 1bN » N

are homotopic to the identity maps on M and N , respectively. The existence of a
homotopy α » idM follows immediately from the definition of e. To verify that β is
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homotopic to the identity, it will suffice (by virtue of the faithfulness of T ) to show that
T pβq is homotopic to the identity on T pNq » A. It now suffices to observe that T pβq
can be identified with the composition A » Ab 1 idbu

ÝÝÝÑ AbA
m
ÝÑ A, where u : 1 Ñ A

is the unit map and m : A b A Ñ A is the multiplication on A. This completes the
proof of piq.

To verify conditions piiq and piiiq, let G1 : C Ñ C denote the functor given by
GpXq “M bX. We then have a commutative diagram of 8-categories

C

G ��

T // LModApCq

G1zz
C,

where G1 is the forgetful functor. Condition piq guarantees that G admits a left adjoint
F : C Ñ C, given by F pY q “ M_ b Y . Note that G1 also admits a left adjoint F 1,
given by F 1pY q “ Ab Y . The diagram σ induces a natural transformation of functors
γ : G1 ˝ F 1 Ñ G ˝ F . Unwinding the definitions, we can restate conditions piiq and piiiq
as follows:

pii1q The natural transformation γ is an equivalence.

piii1q The functor G is conservative.

We now observe that if T is an equivalence, then assertion pii1q is automatic and assertion
piii1q follows from the observation that G1 is conservative.

Conversely, suppose that piq, piiq, and piiiq are satisfied. Applying Corollary
HA.4.7.4.16 (and Remark HA.4.7.4.17 ) to the diagram σ, we deduce that T is an
equivalence.

2.2 Azumaya Algebras

Throughout this section, we continue to assume that C is a symmetric monoidal
8-category satisfying the following:

p˚q The 8-category C admits geometric realizations of simplicial objects, and the
tensor product functor b : Cˆ C Ñ C preserves geometric realizations of simplicial
objects.

Definition 2.2.1. Let A be an associative algebra object of C. We will say that A is
an Azumaya algebra if there exists an associative algebra object B P C such that AbB
is Morita equivalent to the unit object 1 P C (which we identify with the initial object
of AlgpCq).
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Proposition 2.2.2. Let A be an associative algebra object of C. The following conditions
are equivalent:

paq The algebra A is Azumaya.

pbq The construction X ÞÑ A b X induces an equivalence of 8-categories C Ñ
ABModApCq.

Corollary 2.2.3. Let A be an associative algebra object of C. Then A is an Azumaya
algebra if and only if it satisfies the following conditions:

piq The algebra A is dualizable when regarded as an object of C.

piiq The left and right actions of A on itself induce an equivalence AbAop Ñ EndpAq.

piiiq The algebra A is full when regarded as an object of C.

Corollary 2.2.4. Let A and B be Azumaya algebras in C. Then the tensor product
AbB is an Azumaya algebra.

Proof of Proposition 2.2.2. Let Catσ8 denote the subcategory of Cat8 spanned by those
8-categories which admit geometric realizations and those functors which preserve
geometric realizations. Then the Cartesian product endows Catσ8 with the structure of
a symmetric monoidal 8-category. Moreover, Catσ8 is presentable and the Cartesian
product preserves small colimits separately in each variable.

Let us regard C as a commutative algebra object of Catσ8, and set ModσC “

ModCpCatσ8q. More informally, ModσC is the 8-category whose objects are 8-categories
M which are left-tensored over C, for which M admits geometric realizations of simpli-
cial objects and the action CˆMÑM preserves geometric realizations of simplicial
objects, and the morphisms in ModσC are C-linear functors which commute with geometric
realizations.

For each algebra object A P AlgpCq, we can regard the 8-category LModApCq as an
object of ModσC . The bimodule 8-category ABModApCq can be identified with the tensor
product (in ModσC) of LModApCq and LModAoppCq, where Aop denotes the opposite
algebra of A. Moreover, the functor

ρ : C Ñ ABModApCq » LModApCq bC LModAoppCq X ÞÑ X bA

exhibits LModApCq as a dual of LModAoppCq in the symmetric monoidal 8-category
ModσC . Consequently, the functor ρ is an equivalence if and only if LModApCq is an
invertible object of ModσC : that is, if and only if A is an Azumaya algebra.
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Remark 2.2.5 (The Center of an Azumaya Algebras). Suppose that the 8-category C
is presentable and that the tensor product b : Cˆ C Ñ C preserves small colimits in
each variable. Then, to every associative algebra object A P AlgpCq, we can associate
an E2-algebra object ZpAq P AlgE2pCq, called the center of A, which is universal among
those E2-algebras for which A an be promoted to an algebra object of the monoidal
8-category LModZpAqpCq (see Theorem HA.5.3.1.14 ). As an algebra object of C, the
center ZpAq classifies endomorphisms of A as an object of the bimodule 8-category
ABModApCq (regarded as an 8-category tensored over C); see Theorem HA.4.4.1.28 .

In the special case where A is an Azumaya algebra object of C, there exists a C-linear
equivalence C Ñ ABModApCq which carries the unit object 1 to A. Consequently, we
can identify the center ZpAq with the endomorphism algebra EndCp1q » 1 as an algebra
object of C. It follows that the unit map 1 Ñ ZpAq is an equivalence of associative
algebra objects of C, and therefore also an equivalence of E2-algebra objects of C.

2.3 The Brauer Group

Throughout this section, we continue to assume that C is a symmetric monoidal
8-category satisfying the following:

p˚q The 8-category C admits geometric realizations of simplicial objects, and the
tensor product functor b : Cˆ C Ñ C preserves geometric realizations of simplicial
objects.

Definition 2.3.1. We let BrpCq denote the set of Morita equivalence classes of Azumaya
algebras A P AlgpCq. We will refer to BrpCq as the Brauer group of C. If A is an Azumaya
algebra, we let rAs denote the Morita equivalence class of A in BrpCq.

Proposition 2.3.2. There exists a unique abelian group structure on the set BrpCq
satisfying the following condition: for every pair of Azumaya algebras A,B P AlgpCq,
we have rAbBs “ rAs ` rBs in BrpCq.

Proof. Let ModσC be as in the proof of Proposition 2.2.2. Then ModσC is a symmetric
monoidal 8-category. Let G denote the collection of isomorphism classes of invertible
objects of ModσC , so that the tensor product on ModσC endows G with the structure of
an abelian group (which we will denote additively). The construction rAs ÞÑ LModApCq
determines an injective map ρ : BrpCq Ñ G satisfying ρprA b Bsq “ ρprAsq ` ρprBsq.
It follows that the image of ρ is closed under addition. Moreover, ρpr1sq is the unit
element of G (given by the 8-category C, regarded as a module over itself). Using
the identity ρprAopsq » ´ρprAsq, we conclude that the image of ρ is a subgroup of G,
so there is a unique abelian group structure on BrpCq for which the map ρ is a group
homomorphism.
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Remark 2.3.3 (The Brauer Space). For every symmetric monoidal 8-category C, let
PicpCq denote the subcategory of C spanned by the invertible objects and equivalences
between them. Then PicpCq is a grouplike E8-space, so that π0 PicpCq has the structure
of an abelian group. If C admits geometric realizations and the tensor product b :
Cˆ C Ñ C preserves geometric realizations, then we can identify C with a commutative
algebra object of the 8-category Catσ8 (as in the proof of Proposition 2.2.2). Let E
denote the full subcategory of ModCpCatσ8q spanned by those 8-categories of the form
LModApCq, where A is an associative algebra object of C. We let BrpCq denote the space
PicpEq of invertible objects of E . Then BrpCq is a nonconnected delooping of PicpCq: it
is equipped with canonical equivalences

Ω BrpCq » PicpCq π0 BrpCq » BrpCq.

Remark 2.3.4. Since BrpCq is an infinite loop space, the homotopy groups π˚BrpCq
can be regarded as a graded module over the ring π˚pSq (where S denotes the sphere
spectrum). In particular, the unique nonzero element η P π1pSq induces a map BrpCq “
π0 BrpCq η

ÝÑ π1 BrpCq » π0 PicpCq. Concretely, this map is given by the formation of
Hochschild homology: if A is an Azumaya algebra of C, then it carries the Brauer class
rAs to the equivalence class of the tensor product AbAbAop A (which is an invertible
object of C.

2.4 Functoriality

We now study the extent to which the Brauer group BrpCq of Definition 2.3.1 depends
functorially on C.

Proposition 2.4.1. Let C and D be symmetric monoidal 8-categories. Suppose that C
and D admit geometric realizations of simplicial objects, and that the tensor product
functors

b : Cˆ C Ñ C b : DˆD Ñ D

preserve geometric realizations. Let F : C Ñ D be a symmetric monoidal functor which
satisfies the following condition:

p˚q If C P C is full and dualizable, then F pCq P D is full (note that F pCq is automati-
cally dualizable, since the functor F is symmetric monoidal).

Then:

paq The functor F carries Azumaya algebras in C to Azumaya algebras in D.

pbq There is a unique group homomorphism BrpF q : BrpCq Ñ BrpDq satisfying
BrpF qrAs “ rF pAqs.
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Proof. Assertion paq follows from Corollary 2.2.3 (note that conditions piq and piiq of
Corollary 2.2.3 are preserved by any symmetric monoidal functor). To prove pbq, we
first observe that if A and B are Azumaya algebra objects of C satisfying rAs “ rBs in
BrpCq, then we have AbBop » EndpMq where M is a full dualizable object of C. We
then obtain equivalences

F pAq b F pBqop » F pAbBopq » F pEndpMqq » EndpF pMqq,

so that rF pAqs “ rF pBqs in BrpDq. It follows that there is a unique map of sets
BrpF q : BrpCq Ñ BrpDq satisfying BrpF qrAs “ rF pAqs. Since F commutes with tensor
products, the map BrpF q is a group homomorphism.

Remark 2.4.2. In the situation of Proposition 2.4.1, it is not necessary to assume that
the functor F preserves geometric realizations of simplicial objects.

2.5 Example: The Brauer Group of a Field

Let κ be a field and let Vectκ denote the category of vector spaces over κ. We regard
Vectκ as equipped with the symmetric monoidal structure given by the usual tensor
product bκ. Then:

• An object V P Vectκ is full (in the sense of Definition 2.1.2) if and only if V ‰ 0.

• An object V P Vectκ is dualizable if and only if V is finite-dimensional as a vector
space over κ.

It follows from Corollary 2.2.3 that that a κ-algebra A is an Azumaya algebra if and
only if 0 ă dimκpAq ă 8 and the natural map Abκ Aop Ñ EndκpAq is an isomorphism.
In this case, the class of Azumaya algebras admits several other characterizations. The
following results are well-known:

Proposition 2.5.1. Let A be an algebra over a field κ. The following conditions are
equivalent:

paq The algebra A is Azumaya: that is, 0 ă dimκpAq ă 8 and the natural map
Abκ A

op Ñ EndκpAq is an isomorphism.

pbq The algebra A is central simple: that is, dimκpAq ă 8, the unit map κÑ A is an
isomorphism from κ to the center of A, and for every two-sided ideal I Ď A we
have either I “ 0 or I “ A.

pcq The algebra A is isomorphic to a matrix ring MnpDq, where n ą 0 and D is a
central division algebra over κ.
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Proposition 2.5.2. Let D and D1 be central division algebras over the same field κ.
Then matrix algebras MnpDq and Mn1pD

1q are Morita equivalent if and only if D and
D1 are isomorphic.

Definition 2.5.3. Let κ be a field. We let Brpκq denote the Brauer group of the
category Vectκ. We will refer to Brpκq as the Brauer group of κ.

Combining Propositions 2.5.1 and 2.5.2, we obtain the following:

Corollary 2.5.4. Let κ be a field. Then the construction D ÞÑ rDs induces an isomor-
phism of sets

tCentral division algebras over κu{Isomorphism Ñ Brpκq.

Remark 2.5.5. The Brauer group of a field κ admits a natural description in the
language of Galois cohomology. If κsep denotes a separable closure of κ, then there is a
canonical isomorphism Brpκq » H2pGalpκsep{κq;κˆq.

2.6 Example: The Brauer Group of a Commutative Ring

Let R be a commutative ring. We let Mod♥
R denote the abelian category of (discrete)

R-modules, equipped with the symmetric monoidal structure given by tensor product
over R. Then:

• An object M P Mod♥
R is dualizable if and only if it is a projective R-module of

finite rank.

• A dualizable object M P Mod♥
R is full if and only if the rank of M is positive

(when regarded as a locally constant function on the affine scheme SpecR).

Definition 2.6.1. Let R be a commutative ring. We let BrpRq denote the Brauer
group of the symmetric monoidal category Mod♥

R. We refer to BrpRq as the Brauer
group of R.

Example 2.6.2. When R is a field, then the Brauer group BrpRq of Definition 2.6.1
specializes to the Brauer group of Definition 2.5.3.

Remark 2.6.3. If φ : RÑ R1 is a homomorphism of commutative rings, then extension
of scalars along φ carries full dualizable objects of Mod♥

R to full dualizable objects of
Mod♥

R1 . It follows that φ induces a homomorphism of Brauer groups BrpRq Ñ BrpR1q
(Proposition 2.4.1).

We will need the following result of Grothendieck (see Corollary I.6.2 of [4]):

Proposition 2.6.4. Let R be a Henselian local ring with residue field κ. Then the map
BrpRq Ñ Brpκq of Remark 2.6.3 is an isomorphism.
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2.7 Example: The Brauer Group of a Connective Ring
Spectrum

Let R be a connective E8-ring and let ModcR denote the 8-category of connective
R-modules. We regard ModcR as a symmetric monoidal 8-category (via the relative
smash product over R). Then:

• An object M P ModcR is dualizable if and only if it is a projective R-module of
finite rank.

• A dualizable object M P ModcR is full if and only if the rank of M is positive
(when regarded as a locally constant function on SpecR).

Definition 2.7.1. Let R be a connective E8-ring. We let BrpRq denote the Brauer
group of the symmetric monoidal category ModcR. We refer to BrpRq as the Brauer
group of R.

Beware that we now have two different definitions for the Brauer group of a commu-
tative ring R: one given by Definition 2.6.1 (in terms of the abelian category Mod♥

R),
and one given by Definition 2.7.1 (in terms of the 8-category ModcR). Fortunately,
there is little danger of confusion:

Proposition 2.7.2. Let R be a commutative ring. Then the symmetric monoidal functor
π0 : ModcR Ñ Mod♥

R induces an isomorphism of Brauer groups BrpModcRq Ñ BrpMod♥
Rq.

Proof. The functor π0 : ModcR Ñ Mod♥
R induces an equivalence from the full subcategory

of ModcR spanned by the dualizable objects to the full subcategory of Mod♥
R spanned

by the dualizable objects (moreover, a dualizable R-module is full as an object of ModcR
if and only if it is full as an object of Mod♥

R.

Remark 2.7.3 (Functoriality). If φ : RÑ R1 is a morphism of E8-rings, then extension
of scalars along φ carries full dualizable objects of ModcR to full dualizable objects of
ModcR1 . It follows that φ induces a homomorphism of Brauer groups BrpRq Ñ BrpR1q
(Proposition 2.4.1).

Our next result shows that the Brauer groups of Definition 2.7.1 do not capture any
more than their algebraic counterparts:

Proposition 2.7.4. Let R be a connective E8. Then the canonical map R Ñ π0R
induces an isomorphism of Brauer groups BrpRq Ñ Brpπ0Rq.
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Proposition 2.7.4 will be useful us in §9.1, for the purpose of comparing the Brauer
group of a Lubin-Tate spectrum E (in the sense of Definition 1.0.6) with the Brauer
group of its residue field (see Proposition 9.1.5). The proof of Proposition 2.7.4 is also of
interest, since it highlights (in a substantially simpler setting) some of the ideas which
will be used to analyze BrpEq in §8.

Lemma 2.7.5. Let R be a connective E8-ring and let A be an Azumaya algebra object of
the 8-category ModcR. Suppose that there exists an isomorphism α0 : π0A » Endπ0RpM0q
for some finitely generated projective π0R-module M0. Then α0 can be lifted to an
equivalence A » EndRpMq, for some finitely generated projective R-module M .

Proof. We will deduce Lemma 2.7.5 from the following:

p˚q The module M0 belongs to the essential image of the extension-of-scalars functor

LModcA Ñ LModcπ0A M ÞÑ pπ0Aq bAM.

Assume that p˚q is satisfied, so that we can write M0 “ pπ0Aq bAM . Since A is flat
over R, we also have an equivalence M0 » pπ0Rq bRM . It follows that M is a locally
free R-module of finite rank. Moreover, the action of A on M is classified by a map of
flat R-modules e : AÑ EndRpMq which induces an equivalence on π0. It follows that e
is an equivalence, which proves Lemma 2.7.5.

It remains to prove p˚q. Note that we can identify LModcA with the inverse limit of
the tower of 8-categories tLModcτďnAuně0 (see Proposition SAG.?? ). It will therefore
suffice to show that we can extend M0 to a compatible sequence of objects tMn P

LModcτďnAuně0. Assume that n ą 0 and that the module Mn´1 has been constructed.
Theorem HA.7.4.1.26 implies that τďnR can be realized as a square-zero extension
of τďn´1R by N “ ΣnpπnRq: that is, there exists a pullback diagram of connective
E8-rings

τďnR //

��

τďn´1R

d
��

τďn´1R
d0// pτďn´1Rq ‘ ΣN.

Set A1 “ AbR pτďn´1R‘ ΣNq, so that we have a pullback diagram of Op 1-algebras

τďnA //

��

τďn´1A

φ
��

τďn´1A
ψ // A1
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and therefore a pullback diagram of 8-categories σ :

LModcτďnA //

��

LModcτďn´1A

φ˚

��
LModcτďn´1A

ψ˚ // LModcA1

(see Proposition SAG.?? ). Set R1 “ pτďn´1Rq ‘ ΣN , so that K “ φ˚Mn´1 and
K 1 “ ψ˚Mn´1 are finitely generated projective R1-modules and we have equivalences

EndR1pKq Ð A1 Ñ EndR1pK 1qq.

Applying Corollary 2.1.5, we see that these equivalences are determined by an identi-
fication K 1 » LbR1 K for some invertible R1-module L. Note that L becomes trivial
after extending scalars along the projection map R1 Ñ τďn´1R. In particular, we have
a canonical isomorphism π0L » π0R. It follows that L is (non-canonically) equivalent
to R1, so that K and K 1 are equivalent objects of the 8-category LModcA1 . Invoking the
fact that σ is a pullback diagram of 8-categories, we deduce that Mn´1 can be lifted to
an object of Mn P LModcτďnA, as desired.

Lemma 2.7.6. Let R be a connective E8-ring and let A and B be Azumaya algebra
objets of the 8-category ModcR. Suppose that there exists an pπ0Aq-pπ0Bq bimodule M0
that determines a Morita equivalence between π0A and π0B (as Azumaya algebra objects
of Modcπ0R). Then M0 can be lifted to an A-B bimodule M which determines a Morita
equivalence between A and B.

Proof. Apply Lemma 2.7.5 to the tensor product AbR Bop.

Lemma 2.7.7. Let R be a connective E8-ring and let A and B be Azumaya algebra
objets of the 8-category ModcR. Then every isomorphism α0 : π0A » π0B (in the
category of π0R-algebras) can be lifted to an equivalence α : A » B (in the 8-category
of connective R-algebras).

Proof. Set M0 “ π0B, which we regard as a left pπ0Aq-module via the isomorphism
α0 and a right pπ0Bq-module in the tautological way. Then M0 is a bimodule which
determines a Morita equivalence between π0A and π0B. Applying Lemma 2.7.6, we can
lift M0 to an A-B bimodule M which determines a Morita equivalence from A to B.
The unit element 1 P π0B » π0M determines a right B-module map ρ : B Ñ M . By
construction, ρ induces an isomorphism on π0. Since the domain and codomain of ρ are
flat R-modules, it follows that ρ is an equivalence. The left action of A on M classifies
an R-algebra map

α : AÑ EndRModB pMq » EndRModB pBq “ B.
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which induces the isomorphism α0 after applying the functor π0. Since the domain and
codomain of α are flat R-modules, it follows that α is an equivalence.

Lemma 2.7.8. Let R be a connective E8-ring. Then every Azumaya algebra object A0
of Modcπ0R can be lifted to an Azumaya algebra object A of ModcR.

Proof. We proceed as in the proof of Lemma 2.7.5. Using Proposition SAG.?? , we can
identify AlgpModcRq with the inverse limit of the tower of 8-categories

tAlgpModcτďnRquně0.

It will therefore suffice to show that we can extend A0 to a compatible sequence of
algebra objects tAn P AlgpModcτďnRquně0. Assume that n ą 0 and that the algebra
An´1 has been constructed. Let R1 be as in the proof of Lemma 2.7.5, so that we have
a pullback diagram of 8-categories

AlgpModcτďnRq //

��

AlgpModcτďn´1Rq

d˚

��
AlgpModcτďn´1Rq

d˚0 // AlgpModcR1q.

To show that An´1 can be lifted to an algebra object An P AlgpModcτďnRq, it will suffice
to show that d˚An´1 and d˚0An´1 are equivalent as algebras over R1. By construction,
they become equivalent after extension of scalars along the projection map R1 Ñ
τďn´1R. In particular, π0pd

˚An´1q and π0pd
˚
0An´1q are isomorphic (as algebras over

the commutative ring π0R). The desired result now follows from Lemma 2.7.7.

Proof of Proposition 2.7.4. Let R be a connective E8-ring and let u : BrpRq Ñ Brpπ0Rq
be the homomorphism given by extension of scalars along the map RÑ π0R. We wish
to show that u is an isomorphism. The injectivity of u follows from Lemma 2.7.5, and
the surjectivity follows from Lemma 2.7.8.

2.8 Example: The Brauer-Wall Group of a Field

Let κ be a field. We let Vectgr
κ denote the category of pZ{2Zq-graded vector spaces

over κ: that is, vector spaces V equipped with a decomposition as a direct sum
V “ V0 ‘ V1. If V and W are pZ{2Zq-graded vector spaces over κ, then we can regard
the tensor product V bκ W as equipped with the pZ{2Zq-grading described by the
formulae

pV bκW q0 “ pV0 bκW0q ‘ pV1 bκW1q

pV bκW q1 “ pV0 bκW1q ‘ pV1 bκW0q.
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We will regard Vectgr
κ as a symmetric monoidal category via the Koszul sign rule: for

pZ{2Zq-graded vector spaces V and W , the symmetry constraint σV,W : V bκ W »

W bκ V is given by σV,W pv b wq “ p´1qijpw b vq for v P Vi, w PWj .
As in §2.5, it is easy to see that:

• An object V P Vectgr
κ is full (in the sense of Definition 2.1.2) if and only if V ‰ 0.

• An object V P Vectgr
κ is dualizable if and only if V is finite-dimensional as a vector

space over κ.

Definition 2.8.1. Let A be a pZ{2Zq-graded algebra over κ, which we regard as an
associative algebra object of Vectgr

κ . We will say that A is a graded Azumaya algebra
over κ if it is an Azumaya algebra object of Vectgr

κ , in the sense of Definition 2.2.1.

Warning 2.8.2. A graded Azumaya algebra over κ need not remain an Azumaya
algebra over κ when the grading is ignored. Using Corollary 2.2.3, we see that A
is a graded Azumaya algebra if and only if 0 ă dimκpAq ă 8 and the canonical
map ρgr : A bκ A Ñ EndκpAq is an isomorphism, where ρ is given by the formula
ρgrpx b yqpzq “ p´1qjkxzy for x P Ai, y P Aj , and z P Ak. By contrast, A is an
Azumaya algebra (in the ungraded sense) if and only if 0 ă dimκpAq ă 8 and the map
ρ : Abκ AÑ EndκpAq is an isomorphism, where ρ is given by ρpxb yqpzq “ xzy.

Example 2.8.3. Let κ be a field of characteristic ‰ 2, let a be an invertible element of
κ, and define

κp
?
aq “ κrxs{px2 ´ aq.

Then κp
?
aq is either a quadratic extension field of κ (if a is not a square) or is isomorphic

to the product κˆ κ (if a is a square). The decomposition κp
?
aq » κ‘ κ

?
a exhibits

κp
?
aq as a graded Azumaya algebra over κ. However, κp

?
aq is not an Azumaya algebra

over κ in the ungraded sense (since the center of κp
?
aq is larger than κ).

Remark 2.8.4. Let A “ κp
?
aq be as in Example 2.8.3. Then the opposite algebra Aop

(formed in the symmetric monoidal category Vectgr
κ ) can be identified with κp

?
´aq.

Definition 2.8.5. Let κ be a field. We let BWpκq denote the Brauer group of the
category Vectgr

κ . We will refer to BWpκq as the Brauer-Wall group of κ.

Example 2.8.6 (Clifford Algebras). Let V be a vector space over κ and let q : V Ñ κ be
a quadratic form. We define the Clifford algebra ClqpV q to be the κ-algebra generated
by V , subject to the relations x2 “ qpxq for x P V . We can regard ClqpV q as a
pZ{2Zq-graded algebra over κ, where the generators x P V are homogeneous of degree 1.
Then:

23



• The Clifford algebra ClqpV q is a graded Azumaya algebra if and only if the
quadratic form q is nondegenerate.

• The construction pV, qq ÞÑ rClqpV qs induces a group homomorphism W pκq Ñ
BWpκq, where W pκq denotes the Witt group of quadratic spaces over κ.

We now briefly review the structure of the Brauer-Wall group BWpκq. For a more
detailed discussion, we refer the reader to [5].

Proposition 2.8.7. Let A be a graded Azumaya algebra over κ. Then exactly one of
the following assertions holds:

paq The graded Azumaya algebra A is also an Azumaya algebra over κ.

pbq The characteristic of κ is different from 2 and A is isomorphic to a tensor product
Bbκκp

?
aq, where B is an Azumaya algebra over κ (regarded as a graded Azumaya

which is concentrated in degree zero) and κp
?
aq is defined as in Example 2.8.3.

Proof. The dimension of an Azumaya algebra over κ is always a square, so paq and pbq
cannot both occur. Assume that A is not an Azumaya algebra; we will show that pbq is
satisfied. Note that the field κ must have characteristic different from 2 (otherwise, the
forgetful functor Vectgr

κ Ñ Vectκ is symmetric monoidal and carries Azumaya algebras
to Azumaya algebras).

Let σ denote the involution of A which is the identity on A0 and multiplication
by p´1q on A1. Then σ is an algebra automorphism of A, and therefore carries the
radical of A to itself. It follows that E “ tf P EndκpAq : fpIq Ď Iu is a pZ{2Zq-graded
subalgebra of EndκpAq. Note that the map ρgr : A bκ A Ñ EndκpAq factors through
E. Our assumption that A is a graded Azumaya algebra guarantees that ρgr is an
isomorphism, so that E “ EndκpAq. It follows that I “ 0, so that the algebra A is
semisimple.

Let Z be the center of A. Then Z is invariant under the automorphism σ, and
therefore inherits a grading Z » Z0 ‘ Z1. Note that if z is an element of Z0, then
z b 1´ 1b z is annihilated by ρgr. Since the map ρgr is an isomorphism, it follows that
Z0 “ κ consists only of scalars. Since condition paq is not satisfied, the center Z must
be larger than κ. We can therefore choose some nonzero element x P Z1. Set a “ x2 P κ.
The element a must be nonzero (otherwise x would belong to the radical of A), so that
x is invertible. We can therefore write

A “ A0 ‘A1 “ A0 ‘A0x » A0 bκ κp
?
aq.

Using the centrality of x, we see that this identification is an isomorphism of pZ{2Zq-
graded algebras. To complete the proof, it will suffice to show that the algebra A0 is
central simple over κ. Note that any central element z P A0 is also central in A (since
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it also commutes with x), and therefore belongs to Z0 “ κ. Moreover, we can write
I “ J ` Jx, where J is the radical of A0; consequently, the vanishing of I implies the
vanishing of J .

Proposition 2.8.8. Let κ be a field of characteristic ‰ 2. Then:

p1q The inclusion functor Vectκ ãÑ Vectgr
κ induces a monomorphism of Brauer groups

ι : Brpκq “ BrpVectκq Ñ BrpVectgr
κ q “ BWpκq.

p2q There exists a unique surjective group homomorphism ε : BWpκq Ñ Z{2Z with
the following property: if A is a graded Azumaya algebra, then εprAsq “ 0 if and
only if A is an Azumaya algebra.

p3q The composition ε ˝ ι vanishes, and the homology kerpεq{ Impιq is canonically
isomorphic to κˆ{κˆ2.

It follows from Proposition 2.8.8 that if the field κ has characteristic ‰ 2, then the
Brauer-Wall group BWpκq admits a composition series whose successive quotients are
Brpκq, κˆ{κˆ2, and Z{2Z. In general, it is a nontrivial extension of those groups:

Example 2.8.9. Let R be the field of real numbers. Then we have isomorphisms
BrpRq » Rˆ {Rˆ2 » Z{2Z. The Brauer-Wall group BWpRq is isomorphic to Z{8Z.

Remark 2.8.10. If κ is a field of characteristic 2, then the maps ι : Brpκq Ñ BWpκq
and ε : BWpκq Ñ Z{2Z are still well-defined. However, the map ε is identically zero,
and the map ι is split injective (with a left inverse given by the forgetful functor
Vectgr

κ Ñ Vectκ). In this case, one can show that the Brauer-Wall group BWpκq splits as
a direct sum BWpκq » Brpκq ‘H1

etpSpecκ,Z{2Zq, where the étale cohomology group
H1

etpSpecκ,Z{2Zq can be described concretely as the cokernel of the Artin-Schreier map

κ
x ÞÑx´x2
ÝÝÝÝÝÑ κ.

Proof of Proposition 2.8.8. The well-definedness of the map ι : Brpκq Ñ BWpκq is a
special case of Proposition 2.4.1. To complete the proof of p1q, it will suffice to show that
ι is injective. Let A be an Azumaya algebra over κ and suppose that ιprAsq vanishes in
the Brauer-Wall group BWpκq. Then there exists a finite-dimensional pZ{2Zq-graded
vector space V and an isomorphism of pZ{2Zq-graded algebras A » EndκpV q. It follows
that rAs vanishes in the Brauer group Brpκq, as desired.

We now prove p2q. Note that if A is a graded Azumaya algebra over κ, then
Proposition 2.8.7 implies that we can write dimκpAq “ 2epAqd2

A, where

epAq “

#

0 if A is an Azumaya algebra
1 otherwise
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and dA is a positive integer. If A and B are Morita equivalent, then the product

dimκpAq dimκpBq “ dimκpAbκ B
opq

is a perfect square (since A bκ B
op is isomorphic to a matrix ring), and therefore

epAq “ epBq. It follows that there is a unique map of sets ε : BWpκq Ñ Z{2Z
satisfying εprAsq “ epAq for every graded Azumaya algebra A. From the identity
dimκpAbκ Bq “ dimκpAqdimκpBq, we deduce that

epAbκ Bq ” epAq ` epBq pmod 2q,

so that ε is a group homomorphism. The surjectivity of ε follows from the observation
that not every graded Azumaya algebra is an Azumaya algebra (Example 2.8.3).

We now prove p3q. The vanishing of ε ˝ ι follows immediately from the definitions.
For each element a P κˆ, set Qpaq “ rκp

?
aqs P BWpκq. Note that Qpaq depends only

on the residue class of a modulo κˆ2, so we can regard Q as a function from κˆ{κˆ2

to the Brauer-Wall group BWpκq. Note that εpQpaqq “ 1 for each a P κˆ, so that
Qpaq ´Qp1q belongs to the kernel kerpεq.

To complete the proof, it will suffice to show the following:

piq The construction a ÞÑ Qpaq ´Qp1q induces a group homomorphism λ : κˆ{κˆ2 Ñ
kerpεq{ Impιq.

piiq The homomorphism λ is surjective.

piiiq The homomorphism λ is injective.

To prove piq, we must show that for every pair of elements a, b P κˆ, we have

Qpabq ´Qp1q ” pQpaq ´Qp1qq ` pQpbq ´Qp1q pmod Impιqq. (2.1)

Using Remark 2.8.4, we obtain an identity Qp´1q “ ´Qp1q, so we can rewrite (2.1) as
an identity

Qpabq ” Qpaq `Qpbq `Qp´1q pmod Impιqq (2.2)

Note that the right hand side of (2.2) is represented by the graded Azumaya algebra
A generated by anticommuting odd variables x, y, and z satisfying x2 “ a, y2 “ b,
and z2 “ ´1. We now observe that t “ xyz is a central odd element of A satisfying
t2 “ ab, so that the proof of Proposition 2.8.7 supplies an isomorphism of graded
algebras A » A0 bκ κp

?
abq which witnesses the equality (2.2).

To prove piiq, it will suffice to show that every element u P BWpκq satisfying εpuq “ 1
can be written as ιpuq `Qpaq, for some element a P κˆ{κˆ2. This follows immediately
from Proposition 2.8.7.
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To prove piiiq, suppose we are given an element a P κˆ satisfying λpaq “ 0, so that
Qpaq ´ Qp1q “ Qpaq ` Qp´1q belongs to the image Impιq; we wish to show that a is
a square. The class Qpaq ` Qp´1q is represented by the graded Azumaya algebra A
generated by anticommuting odd elements x and y satisfying x2 “ a and y2 “ ´1. Our
assumption that rAs P Impιq implies that we can choose an Azumaya algebra B over κ
(which we regard as a graded Azumaya algebra which is concentrated in degree zero) for
which the tensor product Abκ B is Morita-trivial: that is, it is isomorphic to EndκpV q
for some pZ{2Zq-graded vector space V over κ. Write dimκpBq “ d2, so that V has
dimension 2d over κ. Note that multiplication by x P A induces an automorphism of
V which shifts degrees, so we must have dimκpV0q “ dimκpV1q “ d. It follows that the
action of B on V0 induces an isomorphism B » EndκpV0q, so that rBs “ 0 in Brpκq. We
may therefore replace B by κ and thereby reduce to the case d “ 1.

Fix a nonzero element v P V0. Then xv and yv are nonzero elements of the 1-
dimensional vector space V1, so we can write xv “ cyv for some scalar c P κ. We now
compute

av “ x2v “ xpcyvq “ ´cypxvq “ ´cypcyvq “ ´c2y2v “ c2v,

so that a P κˆ2 as desired.

Remark 2.8.11. Let κ be a field of characteristic different from 2. The proof of
Proposition 2.8.8 shows that the Brauer-Wall group BWpκq is generated (as an abelian
group) by the image of the map ι : Brpκq Ñ BWpκq together with elements of the form
rκp
?
aqs, where κp

?
aq is defined as in Example 2.8.3.

2.9 The Brauer Group of a Lubin-Tate Spectrum

We now introduce the main object of interest in this paper. Let κ be a perfect field
of characteristic p ą 0, let G0 be a formal group of height n ă 8 over κ, and let E
denote the associated Lubin-Tate spectrum. We let ModE denote the 8-category of
E-module spectra, and we let Modloc

E denote the full subcategory of ModE spanned by
the Kpnq-local E-module spectra.

Remark 2.9.1. Let R “ π0E be the Lubin-Tate ring and let m Ď R be the maximal
ideal of R. An object M P ModE belongs to the subcategory Modloc

E if and only if, for
every element x P m, the homotopy limit of the tower

¨ ¨ ¨ ÑM
x
ÝÑM

x
ÝÑM

x
ÝÑM

x
ÝÑM

is contractible.
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We will regard ModE as a symmetric monoidal 8-category with respect to the
formation of smash products relative to E, which we will denote by

bE : ModE ˆModE Ñ ModE .

Let L : ModE Ñ Modloc
E denote a left adjoint to the inclusion functor. The localization

functor L is compatible with the smash product bE (in other words, the collection of
Kpnq-local equivalences is closed under smash products). It follows that there is an
essentially unique symmetric monoidal structure on the 8-category Modloc

E for which
the localization functor L : ModE Ñ Modloc

E is symmetric monoidal. We will denote
the underlying tensor product by

pbE : Modloc
E ˆModloc

E Ñ Modloc
E .

Concretely, it is given by the formula M pbEN “ LpM bE Nq.

Definition 2.9.2. Let E be a Lubin-Tate spectrum. We let BrpEq denote the Brauer
group of the symmetric monoidal 8-category Modloc

E . We will refer to BrpEq as the
Brauer group of E.

Warning 2.9.3. The terminology of Definition 2.9.2 has the potential to cause some
confusion: it would be more accurate to refer to BrpEq as the Kpnq-local Brauer group
of E (this is the terminology used in [3]). We can also consider the Brauer group
BrpModEq of the 8-category ModE of all E-modules. However, this turns out to be
less interesting: we will see later that BrpModEq can be identified with a subgroup of
BrpEq (Proposition 9.2.1; see also Conjecture 9.4.1).

Let us now make Definition 2.9.2 a little bit more explicit by describing the Azumaya
algebras of Modloc

E . The following result is standard:

Proposition 2.9.4. Let M be an E-module spectrum. The following conditions are
equivalent:

p1q The E-module M is perfect: that is, it is a dualizable object of the 8-category
ModE.

p2q The E-module M is a dualizable object of Modloc
E .

p3q The homotopy groups π0pKpnqbEMq and π1pKpnqbEMq are finite-dimensional
vector spaces over κ, where Kpnq is an atomic E-algebra.

p4q The homotopy groups π0M and π1M are finitely generated modules over the
Lubin-Tate ring R “ π0E.
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Remark 2.9.5. It follows from Proposition 2.9.4 that if M is a dualizable object of
Modloc

E , then the construction N ÞÑMbEN preserves Kpnq-local objects. Consequently,
we do not need to distinguish between the smash product M bE N and the completed
smash product M pbEN .

Proposition 2.9.6. Let M be a Kpnq-local E-module spectrum. Then M is a full
object of Modloc

E (in the sense of Definition 2.1.2) if and only if M is nonzero.

Proof. The “only if” direction is obvious. Conversely, suppose that M is nonzero; we
wish to show that the functor ‚pbEM is conservative. Equivalently, we wish to show
that if N P Modloc

E is nonzero, then the tensor product N pbEM is nonzero. Let Kpnq
be an atomic E-algebra, so that Kpnq bE M and N bE Kpnq are nonzero. Since every
(left or right) Kpnq-module can be decomposed as a sum of (possibly shifted) copies of
Kpnq (Proposition 3.6.3), it follows that

pN bE Kpnqq bKpnq pKpnq bE Mq » N bE Kpnq bE M » Kpnq bE pM bE Nq

is also nonzero, so that M bE N must be nonzero as desired.

Corollary 2.9.7. Let A be an E-algebra. Then A is an Azumaya algebra object of
Modloc

E if and only if it is nonzero, the homotopy groups π0A and π1A are finitely
generated modules over R “ π0E, and the natural map A bE A

op Ñ EndEpAq is an
equivalence.

Proof. Combine Proposition 2.9.4, Remark 2.9.5, Proposition 2.9.6, and Corollary
2.2.3.

Warning 2.9.8. Corollary 2.9.7 does not imply that every Azumaya algebra object A
of Modloc

E is also an Azumaya algebra object of ModE : beware that A need not be full
as an object of ModE . This is exactly what happens in the case of greatest interest to
us: we will see that there are plenty of examples of atomic Azumaya algebras in Modloc

E ,
but atomic E-algebras are never full as objects of ModE .
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Chapter 3

Thom Spectra and Atomic
Algebras

Let E be a Lubin-Tate spectrum and let m Ď π0E denote the maximal ideal. We
will say that an E-algebra A is atomic if the unit map π˚E Ñ π˚A is a surjection, whose
kernel is the graded ideal mpπ˚Eq (Definition 1.0.2). In this section, we review some
standard facts about atomic E-algebras:

paq Atomic E-algebras always exist (Proposition 3.5.1).

pbq If A and A1 are atomic E-algebras, then A and A1 are equivalent as E-modules
(Corollary 3.6.6).

pcq If the residue field κ “ pπ0Eq{m has characteristic different from 2, then there
exists an atomic E-algebra A whose multiplication is homotopy commutative
(Proposition 3.5.2).

To prove assertions paq and pcq, it will be convenient to introduce a general procedure for
producing E-algebras as Thom spectra (Construction 3.1.5). As we will see, every atomic
E-algebra can be realized as as the Thom spectrum of a polarized torus (Proposition
3.4.6). More generally, Thom spectra associated to polarized tori provide a useful tool
for investigating the structure of the Brauer group BrpEq, which we will exploit in the
sequel to this paper.

3.1 Thom Spectra

We begin by reviewing the theory of Thom spectra from the8-categorical perspective.
For more details, we refer the reader to [1].
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Let R be an E8-ring, which we regard as fixed throughout this section. We let
PicpRq “ PicpModRq denote the subcategory of ModR whose objects are invertible
R-modules and whose morphisms are equivalences (see Remark 2.3.3). Note that PicpRq
is closed under tensor products in ModR, and therefore inherits the structure of a
symmetric monoidal 8-category: in other words, it can be regarded as an E8-space.

Notation 3.1.1. The E8-space PicpRq is grouplike, and can therefore be identified
with the 0th space of a connective spectrum. In particular, PicpRq admits a canonical
connected delooping, which we will denote by BPicpRq. The space BPicpRq can be
identified with a connected component of the Brauer space BrpModRq appearing in
Remark 2.3.3.

Notation 3.1.2. Let S{PicpRq denote the 8-category whose objects are pairs pX,Qq,
where X is a Kan complex equipped with a map Q : X Ñ PicpRq. Note that, since
PicpRq is a commutative algebra object of the 8-category S of spaces, the 8-category
S{PicpRq inherits the structure of a symmetric monoidal 8-category (see Theorem
HA.2.2.2.4 ). Concretely, the tensor product on S{PicpRq is given by

pX,QXq b pY,QY q “ pX ˆ Y,QXˆY q QXˆY px, yq “ QXpxq bR QY pyq.

Let R be an E8-ring. The construction

pL P PicpRqq ÞÑ pp˚, Lq P S{PicpRqq

determines a symmetric monoidal functor f : PicpRq Ñ S{PicpRq. Since the 8-category
S{PicpRq admits small colimits (and the tensor product on S{PicpRq preserves small
colimits separately in each variable), the functor f admits an essentially unique extension
to a colimit-preserving symmetric monoidal functor F : PpPicpRqq Ñ S{PicpRq, where
PpPicpRqq “ FunpPicpRqop,Sq denotes the8-category of S-valued presheaves on PicpRq
(regarded as a symmetric monoidal 8-category with respect to Day convolution; see
§HA.4.8.1 for more details). It is not difficult to see that the functor F is an equivalence
of 8-categories. Invoking the universal property of PpPicpRqq, we obtain the following
result:

Proposition 3.1.3. Let C be a symmetric monoidal 8-category. Assume that C admit
small colimits and that the tensor product functor b : Cˆ C Ñ C preserves small colimits
separately in each variable. Then composition with the functor f : PicpRq Ñ S{PicpRq
described above induces an equivalence of 8-categories

LFunbpS{PicpRq, Cq Ñ FunbpPicpRq, Cq.

Here FunbpPicpRq, Cq denotes the 8-category of symmetric monoidal functors from
PicpRq to C, while LFunbpS{PicpRq, Cq denotes the 8-category of colimit-preserving
symmetric monoidal functors from S{PicpRq to C.
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Corollary 3.1.4. There is an essentially unique symmetric monoidal functor Th :
S{PicpRq Ñ ModR with the following properties:

piq The functor Th commutes with small colimits.

piiq The diagram of symmetric monoidal 8-categories

S{PicpRq
Th

%%
PicpRq

f
99

i //ModR

commutes up to homotopy, where f is defined as above and i denotes the inclusion
map.

Construction 3.1.5 (Thom Spectra). Let Th : S{PicpRq Ñ ModR be the functor of
Corollary 3.1.4. We will refer to Th as the Thom spectrum functor. Given an object
pX,Qq P S{PicpRq, we will refer to ThpX,Qq as the Thom spectrum of X with respect to
Q.

Remark 3.1.6. Let pX,Qq be an object of S{PicpRq. Then the Thom spectrum ThpX,Qq
can be identified with the colimit, formed in the 8-category ModR, of the composite
functor X Q

ÝÑ PicpRq ãÑ ModR.

Remark 3.1.7 (Cap Products). Let X be a space. For any map Q : X Ñ PicpRq,
the Thom spectrum ThpX,Qq carries an action of the function spectrum RX . If X is
finite (which is the only case of interest to us), then the action map RX bR ThpX,Qq Ñ
ThpX,Qq is dual to the map

ThpQ,Xq Ñ pRb Σ8`Xq bR ThpX,Qq » ThpX ˆX,π˚Qq

induced by the diagonal map δ : X Ñ X ˆ X, where π : X ˆ X Ñ X denotes the
projection onto the second factor.

Example 3.1.8. Let X be a space, let Q : X Ñ PicpRq be a map, and let u be an
invertible element in the ring π0R

X . Then cap product with u induces an automorphism
of the Thom spectrum ThpX,Qq. Concretely, this automorphism is obtained using the
functoriality of the construction pX,Qq ÞÑ ThpX,Qq (note that u can be identified with
a homotopy from the map Q : X Ñ PicpRq to itself).
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3.2 Polarizations

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Our goal is to single out a special class of Thom spectra (in the sense of Construction
3.1.5) which will be useful for studying the Brauer group BrpEq.

Definition 3.2.1. A lattice is a free abelian group of finite rank. If Λ is a lattice, we
let KpΛ, 1q denote the associated Eilenberg-MacLane space, which we regard as a group
object of the 8-category S of spaces. A polarization of Λ is a map Q : KpΛ, 1q Ñ PicpEq
in the 8-category of group objects of S. If Q is a polarization of Λ, then we can regard
pKpΛ, 1q, Qq as an associative algebra object of the 8-category S{PicpEq of Notation
3.1.2. We let ThQ P AlgE denote the Thom spectrum ThpKpΛ, 1q, Qq, which we regard
as an associative algebra object of ModE .

Variant 3.2.2 (Reduced Thom Spectra). Let Λ be a lattice and let Q : KpΛ, 1q Ñ
PicpEq be a polarization. We define the reduced Thom spectrum Thred

Q to be the cofiber
of the unit map E Ñ ThQ, which we regard as an object of ModE .

Remark 3.2.3. Let Λ be a lattice equipped with a polarization Q : KpΛ, 1q Ñ PicpEq.
Then the Thom spectrum ThQ is equipped with an action of the function spectrum
EKpΛ,1q via cap products (see Remark 3.1.7). Note that the homotopy ring π˚EKpΛ,1q
can be identified with the exterior algebra pπ˚Eq bZ

Ź˚
Z Λ_, where each element of the

dual lattice Λ_ is regarded as homogeneous of degree p´1q. In particular, each element
λ_ P Λ_ induces a map Dλ_ : ThQ Ñ Σ ThQ, whose square is nullhomotopic.

Remark 3.2.4 (Conjugate Polarizations). Let Λ be a lattice and let Q : KpΛ, 1q Ñ
PicpEq be a polarization, so that we can regard the pair pKpΛ, 1q, Qq as an associa-
tive algebra object of the 8-category S{PicpEq. We can identify the opposite algebra
pKpΛ, 1q, Qqop with a pair pKpΛ, 1q, Qq, where Q : KpΛ, 1q Ñ PicpEq is some other
polarization. We will refer to Q as the conjugate of the polarization Q. Beware that
although Q and Q are always homotopic as maps of spaces, they are usually not homo-
topic as morphisms of group objects of S (see Example 3.2.13). Note that we have a
canonical equivalence of E-algebras ThQ » Thop

Q .

Remark 3.2.5. Let Λ be a lattice. Then KpΛ, 1q is a finite space. It follows that,
for any polarization Q : KpΛ, 1q Ñ PicpEq, the Thom spectrum ThQ can be written
as a finite colimit of invertible objects of ModE (Remark 3.1.6). In particular, ThQ is
dualizable as an E-module, and is therefore belongs to Modloc

E .

Remark 3.2.6. Let Λ be a lattice. Then we can identify polarizations of Λ with maps
KpΛ, 2q Ñ BPicpEq in the 8-category of pointed spaces, where BPicpEq is the space
described in Notation 3.1.1.
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We close this section by introducing some useful invariants of a polarization Q.

Notation 3.2.7. Let Λ be a lattice. Since KpΛ, 2q is an E8-space, the unreduced
suspension spectrum Σ8`KpΛ, 2q inherits the structure of an E8-ring. Note that we
have canonical decompositions

Σ8`KpΛ, 2q » S ‘ Σ8KpΛ, 2q

π2Σ8`KpΛ, 2q » π2S ‘ π2Σ8KpΛ, 2q » π2S ‘ Λ,

where S denotes the sphere spectrum. This decomposition yields a map ρ1 : Λ Ñ

π2Σ8`KpΛ, 2q. Using the multiplication on π˚Σ8`KpΛ, 2q, we can extend ρ1 to a family
of maps

ρm : SymmpΛq Ñ π2mΣ8`KpΛ, 2q.

Construction 3.2.8 (The Coefficients of a Polarization). Since PicpEq is a grouplike
E8-space, there is an essentially unique connective spectrum picpEq equipped with
an equivalence of E8-spaces PicpEq » Ω8 picpEq. Note that the homotopy groups of
picpEq are given by

πn picpEq “

$

’

’

’

’

&

’

’

’

’

%

Z{2Z if n “ 0
pπ0Eq

ˆ if n “ 1
πn´1E if n ą 1
0 otherwise.

Let Λ be a lattice equipped with a polarization Q, which we can identify with a
map of pointed spaces KpΛ, 2q Ñ BPicpEq or a map of spectra Σ8KpΛ, 2q Ñ Σ picpEq.
For each positive integer m, we define the mth coefficient of Q to be the map of abelian
groups cQm : SymmpΛq Ñ π2m BPicpEq given by the composition

SymmpΛq ρm
ÝÝÑ π2mΣ8`KpΛ, 2q Ñ π2mΣ8KpΛ, 2q Q

ÝÑ π2mΣ picpEq “ π2m BPicpEq,

where ρm is the map defined in Notation 3.2.7.

Example 3.2.9. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization of
Λ. Then the 1st coefficient cQ1 (in the sense of Construction 3.2.8) can be identified with
the group homomorphism

Λ » π1KpΛ, 1q
π1pQq
ÝÝÝÑ π1 PicpEq » pπ0Eq

ˆ

determined by Q at the level of fundamental groups.
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Remark 3.2.10. Let Λ be a lattice equipped with a polarization Q : KpΛ, 1q Ñ PicpEq.
From the Example 3.2.9, it follows that the 1st coefficient cQ1 depends only on Q as a
map of spaces KpΛ, 1q Ñ PicpEq, rather than as a map of group objects in S. Beware
that this is not true for the higher coefficients.

Example 3.2.11. Let Λ be a lattice of rank 2 with basis λ0, λ1 P Λ, and let Q :
KpΛ, 1q Ñ PicpEq be a polarization. For i P t0, 1u, let ρi : KpΛ, 1q Ñ KpΛ, 1q be the
(pointed) map given by projection of Λ onto the summand Zλi, and let Qi denote the
pullback of Q along ρi. Using the multiplicativity of Q, we obtain canonical equivalences

Q0 bE Q1 » Q » Q1 bE Q0

in the 8-category FunpKpΛ, 1q,PicpEqq. Beware that the composition of these equiv-
alences is usually not the canonical equivalence Q0 bE Q1 » Q1 bE Q0 given by the
symmetry constraint on the symmetric monoidal 8-category ModE . Instead, the two
maps differ by multiplication by

1` cQ2 pλ0λ1q P π0E ‘ π2E » π0E
KpΛ,2q,

where cQ2 is the second coefficient of Q (see Construction 3.2.8).

Remark 3.2.12. Let Λ be a lattice. One can show that a polarization of Λ is determined,
up to homotopy, by its coefficients tcQmumą0. Beware, however, that not every collection
of maps tfm : SymmpΛq Ñ π2m BPicpEqumą0 can be realized as the coefficients of a
polarization of Λ.

Example 3.2.13 (Coefficients of the Conjugate Polarization). Let Λ be a lattice and
let Q be a polarization of Λ, which we will identify with a map of pointed spaces
KpΛ, 2q Ñ BPicpEq. Let Q denote the conjugate of the polarization Q (in the sense
of Remark 3.2.6). Then we can also identify Q with a map of pointed spaces from
KpΛ, 2q to BPicpEq, which is characterized (up to homotopy) by the requirement that
the diagram

KpΛ, 2q Q //

´1
��

BPicpEq

´1
��

KpΛ, 2q Q // BPicpEq

commutes up to homotopy. Note that the left vertical map induces p´1qk on the
cohomology groups H2kpKpΛ, 2q;Mq, while the right vertical map induces p´1q on each
homotopy group of BPicpEq. It follows that the coefficients of Q and Q are related by
the formula cQm “ p´1qm´1cQm.
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3.3 Nonsingular Polarizations

Let E be a Lubin-Tate spectrum and let m Ď π0E denote the maximal ideal. Our
goal in this section is to give a concrete criterion for the vanishing of the Thom spectrum
ThQ of a polarization Q : KpΛ, 1q Ñ PicpEq (Proposition 3.3.2).

Definition 3.3.1. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization
of Λ. We will say that Q is nonsingular if the first coefficient cQ1 : Λ Ñ pπ0Eq

ˆ factors
through the subgroup 1`m Ď pπ0Eq

ˆ.

Proposition 3.3.2. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization
of Λ. Then Q is nonsingular (in the sense of Definition 3.3.1) if and only if the Thom
spectrum ThQ is nonzero.

The proof of Proposition 3.3.2 will require some preliminary remarks.

Notation 3.3.3. Let ρ : Λ1 Ñ Λ be a homomorphism of lattices and let Q : KpΛ, 1q Ñ
PicpEq be a polarization of Λ. We let Qrρs denote the polarization of Λ1 given by the
composition

KpΛ1, 1q ρ
ÝÑ KpΛ, 1q Q

ÝÑ PicpEq.

By construction, ρ can be promoted to a map pKpΛ1, 1q, Qrρsq Ñ pKpΛ, 1q, Qq between
algebra objects of the 8-category S{PicpEq, and therefore induces a morphism ThQrρs Ñ
ThQ in the 8-category AlgE .

Now suppose that Q : KpΛ, 1q Ñ PicpEq is a polarization of a lattice Λ and that
we are given an element λ P Λ. Then we can identify λ with a group homomorphism
Z Ñ Λ (given by n ÞÑ nλ). We let Qrλs denote the induced polarization of Z, so that
obtain a morphism ThQrλs Ñ ThQ as above.

Remark 3.3.4. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization
of Λ. Suppose we are given a finite collection of lattice homomorphisms tρi : Λi Ñ

Λu1ďiďn which induce an isomorphism p
À

ρiq :
À

Λi Ñ Λ. Then the canonical maps
pKpΛi, 1q, Qrρisq Ñ pKpΛ, 1q, Qq induce an equivalence

pKpΛ1, 1q, Qrρ1sq b ¨ ¨ ¨ b pKpΛn, 1q, Qrρnsq Ñ pKpΛ, 1q, Qq

in the 8-category S{PicpEq. It follows that the composite map

ThQrρ1sbE b ¨ ¨ ¨ bE ThQrρns Ñ ThQbE ¨ ¨ ¨ bE ThQ m
ÝÑ ThQ

is an equivalence of E-modules; here m is induced by the multiplication on ThQ.

36



Warning 3.3.5. In the situation of Remark 3.3.4, the equivalence

ThQrρ1sbE b ¨ ¨ ¨ bE ThQrρns » ThQ

generally depends on the ordering of the factors (since the multiplication on ThQ is not
commutative). Beware also that this equivalence is usually not a map of algebra objects
of ModE .

Example 3.3.6. Let Λ be a lattice of rank 2 with basis λ0, λ1 P Λ, and let λ_0 , λ_1 P Λ_
denote the dual basis for Λ_. Let α denote the composition

ThQ » ThQrλ0sbE ThQrλ1s » ThQrλ1sbE ThQrλ0s » ThQ,

where the outer equivalences are supplied by Remark 3.3.4 and the inner map is
given by the symmetry constraint on ModE . Combining Examples 3.1.8 and 3.2.11,
we deduce that α is homotopic to the map id`cQ2 pλ0, λ1qDλ_0

Dλ_1
, where the maps

Dλ_0
, Dλ_1

: ThQ Ñ Σ ThQ are defined in Remark 3.2.3.

Remark 3.3.7. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization of
Λ. For each λ P Λ, the induced polarization Qrλs : KpZ, 1q » S1 Ñ PicpEq is classified
(as a pointed map) by the element cQ1 pλq P pπ0Eq

ˆ » π1 PicpEq. Using Remark 3.1.6,
we obtain a canonical fiber sequence

E
cQ1 pλq´1
ÝÝÝÝÝÑ E

e
ÝÑ ThQrλs

in the 8-category ModE , where e is the unit map. In particular, we see that ThQrλs is
nonzero if and only if cQ1 pλq belongs to the subgroup 1`m Ď pπ0Eq

ˆ.

Variant 3.3.8. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization. For
each λ P Λ, the cofiber sequence

E
cQ1 pλq´1
ÝÝÝÝÝÑ E

e
ÝÑ ThQrλs

determines a canonical identification Thred
Qrλs “ cofibpeq » ΣE.

Proof of Proposition 3.3.2. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a
polarization of Λ. Suppose first that the Thom spectrum ThQ is nonzero. For each
element λ P Λ, we have a morphism ThQrλs Ñ ThQ in AlgE , so that ThQrλs is also
nonzero. Applying Remark 3.3.7, we deduce that cQ1 pλq belongs to the subgroup
1`m Ď pπ0Eq

ˆ. Allowing λ to vary, we deduce that Q is a nonsingular polarization.
We now prove the converse. Let Q : KpΛ, 1q Ñ PicpEq be a nonsingular polarization,

and choose a basis λ1, λ2, . . . , λn for the lattice Λ. Then each cQ1 pλiq belongs to the
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subgroup 1`m Ď pπ0Eq
ˆ, so each of the Thom spectra ThQrλis is nonzero and therefore

a full object of Modloc
E (Proposition 2.9.6). Applying Remark 3.3.4, we deduce that the

Thom spectrum
ThQ » ThQrλ1sbE ¨ ¨ ¨ bE ThQrλns

is also full (and therefore nonzero).

We conclude with a few observations which will be useful later for recognizing when
the Thom spectrum construction yields Azumaya algebras.

Construction 3.3.9 (The Map rα). Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq
be a nonsingular polarization. By functoriality, each element λ in Λ determines an
E-algebra map ThQrλs Ñ ThQ, and therefore an E-module map Thred

Qrλs Ñ Thred
Q . Under

the canonical identification Thred
Qrλs » ΣE supplied by Variant 3.3.8, the homotopy class

of this map determines an element rαpλq P π1 Thred
Q .

Proposition 3.3.10. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization.
Then the elements rαpλq P π1 Thred

Q satisfy the cocycle formulae

rαp0q “ 0 rαpλ` λ1q “ rαpλq ` cQ1 pλqrαpλ
1q rαp´λq “ ´cQ1 pλq

´1
rαpλq.

Proof. We will prove the identity rαpλ`λ1q “ rαpλq`cQ1 pλqrαpλ
1q; the other two identities

follow as a formal consequence. Let X “ S1 >˚ S
1 be a wedge of two circles, so that λ

and λ1 determine a map u : X Ñ KpΛ, 1q. Let QX denote the restriction of Q to X,
so that we can form the Thom spectrum ThpX,QXq and the reduced Thom spectrum
ThpX,QXqred (given by the cofiber of the map E Ñ ThpX,QXq determined by the base
point of X). We then have a commutative of E-modules

Thred
Qrλs

rαpλq

&&��
Thred

Qrλ`λ1s

f // ThpX,QXqred // Thred
Q

Thred
Qrλ1s

OO
rαpλ1q

88

where the vertical maps are given by the two inclusions of S1 into X, the map f is induced
by the loop S1 Ñ X given by concatenating the two inclusions, and the horizontal
composition is homotopic to rαpλ` λ1q. Since the formation of Thom spectra preserves
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colimits, the vertical maps induce an equivalence of E-modules g : Thred
Qrλs‘Thred

Qrλ1s Ñ

ThpX,QXqred. It will therefore suffice to observe that the composite map

ΣE » Thred
Qrλ`λ1s

f
ÝÑ ThpX,QXqred g´1

ÝÝÑ Thred
Qrλs‘Thred

Qrλ1s » ΣE ‘ ΣE

is homotopic to pid, cQ1 pλqq.

3.4 Atomic Polarizations

Let E be a Lubin-Tate spectrum with maximal ideal m Ď π0E and residue field
κ “ pπ0Eq{m. In this section, we will supply a criterion which can be used to test
whether the Thom spectrum ThQ of a polarization Q : KpΛ, 1q Ñ PicpEq is an atomic
E-algebra, in the sense of Definition 1.0.2 (Proposition 3.4.4). We also show that every
atomic E-algebra arises in this way (Proposition 3.4.6).

Construction 3.4.1. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization, so that the first coefficient cQ1 determines a group homomorphism Λ Ñ
1`m Ď pπ0Eq

ˆ. We let cQ1 : κb Λ Ñ m{m2 be the unique κ-linear map for which the
diagram

Λ

��

cQ1 // 1`m

��
p1`mq{p1`m2q

„

��
κb Λ

cQ1 // m{m2

commutes.

Definition 3.4.2. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization
of Λ. We will say that Q is atomic if it is nonsingular and the map

cQ1 : κb Λ Ñ m{m2

of Construction 3.4.1 is an isomorphism of vector spaces over κ.

Remark 3.4.3. Let Λ be a lattice equipped with a basis pλ1, . . . , λnq, and let Q :
KpΛ, 1q Ñ PicpEq be a polarization. Then Q is atomic (in the sense of Definition 3.4.2)
if and only if the elements cQ1 pλiq ´ 1 form a regular system of parameters for the local
ring π0E. In particular, this is possible only when the rank of Λ (as an abelian group)
coincides with the height of the Lubin-Tate spectrum E.
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The terminology of Definition 3.4.2 is motivated by the following:

Proposition 3.4.4. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization
of Λ. If Q is atomic (in the sense of Definition 3.4.2), then the Thom spectrum ThQ is
an atomic E-algebra (in the sense of Definition 1.0.2).

Remark 3.4.5. We will prove later that the converse of Proposition 3.4.4 is also true:
if the Thom spectrum ThQ is atomic, then the polarization Q is atomic (Corollary
6.6.12).

Proof of Proposition 3.4.4. Let tλiu1ďiďn be a basis for the lattice Λ. Our assumption
that Q is atomic guarantees that we can write cQ1 pλiq “ 1 ` xi, where txiu1ďiďn is a
regular system of parameters for the local ring π0E (Remark 3.4.3). For 0 ď m ď n, let
Apmq denote the E-module given by the formula

Apmq “ ThQrλ1sbE ¨ ¨ ¨ b ThQrλms .

We will prove the following assertion for 0 ď m ď n:

p˚mq The unit map E Ñ Apmq induces an isomorphism pπ˚Eq{px1, . . . , xmq Ñ π˚Apmq.

We proceed by induction on m, the case m “ 0 being obvious. Assume that 0 ă m ď n
and that assertion p˚m´1q is true. Applying Remark 3.3.7, we deduce the existence of a
fiber sequence of E-modules

Apm´ 1q xm
ÝÝÑ Apm´ 1q Ñ Apmq.

Using the regularity of the sequence x1, . . . , xm together with p˚m´1q, we deduce that
multiplication by xm induces a monomorphism from π˚Apm´ 1q to itself, and therefore
a short exact sequence

0 Ñ π˚Apm´ 1q xm
ÝÝÑ π˚Apm´ 1q Ñ π˚Apmq Ñ 0,

from which we immediately deduce p˚mq.
Combining p˚nq with Remark 3.3.4, we deduce that the Thom spectrum ThQ is

atomic.

We now show that every atomic E-algebra arises as a Thom spectrum.

Proposition 3.4.6. Let A be an atomic E-algebra. Then there exists a lattice Λ, an
atomic polarization Q : KpΛ, 1q Ñ PicpEq, and an equivalence of E-algebras A » ThQ.
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Proof. Let PicApEq denote the subcategory of pModEq{A whose objects are E-module
maps u : L Ñ A where L is invertible and u extends to an equivalence of A-modules
uA : AbE L » A, and whose morphisms are equivalences (note that, since A is atomic,
the map uA is an equivalence if and only if u is nonzero). Using the algebra structure on
A, we can regard pModEq{A as a monoidal 8-category (see Theorem HA.2.2.2.4 ). The
subcategory PicApEq is closed under tensor products, and therefore inherits a monoidal
structure. If Λ is a lattice and Q : KpΛ, 1q Ñ PicpEq is a polarization, then the following
data are equivalent:

paq Lifts of Q to a map KpΛ, 1q Ñ PicApEq (as group objects of S).

pbq Morphisms of E-algebras ThQ Ñ A.

Moreover, suppose we are given the data of a polarization Q : KpΛ, 1q Ñ PicpEq and
a map φ : ThQ Ñ A. If Q is atomic, then φ is a morphism of atomic E-algebras
(Proposition 3.4.4), and is therefore automatically an equivalence. It will therefore
suffice to prove the following:

p˚q There exists a lattice Λ with basis λ1, . . . , λn and a map ρ : KpΛ, 2q Ñ BPicApEq
for which the composite map

f : Λ “ π2KpΛ, 2q Ñ π2 BPicApEq Ñ π2 BPicpEq » pπ0Eq
ˆ

has the property that tfpλiq ´ 1u is a regular system of parameters for the local
ring π0E.

The proof of p˚q proceeds by obstruction theory. Unwinding the definitions, we see that
the homotopy groups of BPicApEq are given by the formula

πn BPicApEq “
#

1`m if n “ 2
mπn´2E if n ą 2.

Consequently, if x1, . . . , xn is any regular system of parameters for E, then ρ2 :
KpZn, 2q Ñ τď2 BPicApEq inducing the group homomorphism

Zn “ π2KpZn, 2q Ñ π2pτď2 BPicApEqq “ 1`m

pa1, . . . , anq ÞÑ
ś

p1 ` xiq
ai . To show that ρ2 can be lifted to a map ρ : KpZn, 2q Ñ

BPicApEq, it will suffice to verify the vanishing of a sequence of obstructions

ok P Hk`1pKpZn, 2q, πk BPicApEqq » Hk`1pKpZn, 2q,mpπk´2Eqq

for k ě 3. These obstructions automatically vanish, since the groups πk´2E are trivial
when k is odd, while the cohomology groups Hk`1pKpZn, 2q,Mq are trivial for any
abelian group M when k is even.
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3.5 Existence of Atomic Algebras

We now apply the theory of Thom spectra to prove the following:

Proposition 3.5.1. For every Lubin-Tate spectrum E, there exists an atomic E-algebra
A.

Proof. We proceed as in the proof of Proposition 3.4.6. By virtue of Proposition 3.4.4,
it will suffice to prove the following:

p˚q There exists a lattice Λ with basis λ1, . . . , λn and a map of pointed spaces ρ :
KpΛ, 2q Ñ BPicpEq for which the map

f : Λ “ π2KpΛ, 2q Ñ π2 BPicpEq » pπ0Eq
ˆ

has the property that tfpλiq ´ 1u is a regular system of parameters for the local
ring π0E.

The proof of p˚q proceeds by obstruction theory. If x1, . . . , xn is any regular system
of parameters for the local ring π0E, then there is an essentially unique map ρ2 :
KpZn, 2q Ñ τď2 BPicpEq which induces the group homomorphism

Zn “ π2KpZn, 2q Ñ π2pτď2 BPicpEqq “ 1`m.

To show that ρ2 can be lifted to a map ρ : KpZn, 2q Ñ BPicApEq, it will suffice to verify
the vanishing of a sequence of obstructions

ok P Hk`1pKpZn, 2q, πk BPicpEqq » Hk`1pKpZn, 2q, πk´2Eq

for k ě 3. These obstructions automatically vanish, since the groups πk´2E are trivial
when k is odd, while the cohomology groups Hk`1pKpZn, 2q,Mq are trivial for any
abelian group M when k is even.

We will also need the following variant of Proposition 3.5.1.

Proposition 3.5.2. Let E be a Lubin-Tate spectrum with residue field κ. If the
characteristic of κ is different from 2, then there exists an atomic E-algebra A which is
homotopy commutative.

Warning 3.5.3. If κ has characteristic 2, then atomic E-algebras are never homotopy
commutative.

Warning 3.5.4. In the situation of Proposition 3.5.1, we cannot arrange that A is a
commutative algebra object of the 8-category ModE , even if the residue field κ has odd
characteristic.

42



Remark 3.5.5. If the residue field of E has characteristic different from 2, then the
atomic commutative algebra object of hModE whose existence is asserted by Proposition
3.5.2 is unique up to unique isomorphism; see Corollary 6.9.2.

Proof of Proposition 3.5.2. Let x1, . . . , xn be a regular system of parameters for the
maximal ideal m Ď π0E. For 1 ď i ď n, we can choose a polarization Qi : KpZ, 1q Ñ
PicpEq with cQi1 p1q “ 1 ` xi (this follows by obstruction theory, as in the proof of
Proposition 3.5.1). Let Qi denote the conjugate polarization (see Construction 3.4.1).
We let Q1i : KpZ, 1q Ñ PicpEq denote the polarization given by Q1i “ Qi bQi and let
Apiq denote the Thom spectrum ThQ1i . Note that, as an E-module, we can identify
Apiq with the cofiber of the map from E to itself given by multiplication by

c
Q1i
1 p1q ´ 1 “ cQi1 p1qc

Qi
1 p1q ´ 1 “ pxi ` 1q2 ´ 1 “ 2xi ` x2

i .

Since 2xi ` x2
i is not a zero divisor in the ring π0E, it follows that the homotopy group

π1Apiq vanishes.
By construction, the polarization Q1i is conjugate to itself, so there exists an equiva-

lence of E-algebras α : Apiq » Apiqop. Note that we have a fiber sequence

MapModE pΣE,Apiq
opq Ñ MapModE pApiq, Apiq

opq Ñ MapModE pE,Apiq
opq.

Since the homotopy group π1Apiq
op vanishes, the first term of this fiber sequence is

connected, so the map

π0 MapModE pApiq, Apiq
opq Ñ π0 MapModE pE,Apiq

opq

is a monomorphism. It follows that, as a morphism of E-modules, α is homotopic to
the identity.

Set A “ Ap1qbE ¨ ¨ ¨bEApnq. Our assumption that κ has characteristic different from
2 guarantees that the elements t2xi ` x2

i u1ďiďn is also a regular system of parameters
for the local ring π0E, so that A is an atomic E-algebra (this follows Proposition 3.4.4,
or more directly from the proof of Proposition 3.4.4). By construction, the identity
map from A to itself can be promoted to an equivalence of E-algebras A » Aop. In
particular, the multiplication on A is homotopy commutative, as desired.

3.6 Atomic and Molecular Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
We now show that although atomic objects of AlgE need not be equivalent as algebras
over E, they are always equivalent as modules over E (Corollary 3.6.6). For later use,
it will be convenient to establish a slightly stronger result, which applies to E-algebras
which are only homotopy associative.
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Definition 3.6.1. Let A be an associative algebra object of the homotopy category
hModE. We will say that A is atomic if the unit map E Ñ A induces an isomorphism
pπ˚Eq{mÑ π˚A, where m Ď π0E denotes the maximal ideal.

Remark 3.6.2. An algebra object A P AlgE “ AlgpModEq is atomic in the sense of
Definition 1.0.2 if and only if it is atomic in the sense of Definition 3.6.1.

Proposition 3.6.3. Let E be a Lubin-Tate spectrum, let A P AlgphModEq be atomic,
and let M be a left A-module object of the homotopy category hModE. Then M is
equivalent (as a left A-module) to a coproduct of copies of A and the suspension ΣA.

Proof. Let M be a left A-module object of hModE. Then we can regard π0M and
π1M as vector spaces over the field κ “ π0A, which admit bases tuiuiPI and tvjujPJ .
The elements tui, vju determine a map of left A-modules p

À

iPI Aq ‘ p
À

jPJ ΣAq ÑM ,
which induces an isomorphism on homotopy groups and is therefore an isomorphism in
hModE.

Corollary 3.6.4. Let E be a Lubin-Tate spectrum, let A P AlgphModEq be atomic, and
let M be an E-module. The following conditions are equivalent:

paq The module M is equivalent to a coproduct of copies of A and ΣA.

pbq The E-module M admits the structure of left A-module in the homotopy category
hModE.

Remark 3.6.5. In the situation of Corollary 3.6.4, suppose that A is an algebra object
of the 8-category ModE . Then we can replace pbq by the following apparently strongly
condition:

pb1q The E-module M admits the structure of a left A-module object of ModE .

The implications paq ñ pb1q ñ pbq are obvious, and the implication pbq ñ paq follows
from Proposition 3.6.3.

Corollary 3.6.6. Let E be a Lubin-Tate spectrum and let A,A1 P AlgphModEq be
atomic. Then A and A1 are isomorphic as objects of ModE.

Proof. Let B denote the relative smash product AbE A1. Using Proposition 3.6.3, we
can choose a decomposition

B » p
à

iPI

Aq ‘ p
à

jPJ

ΣAq

of left A-modules in hModE. For each i P I, let ei : B Ñ A denote the projection onto
the ith factor. Since B ‰ 0, the unit element 1 P π0B is nonzero. It follows that we can
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choose an index i P I for which the map ei : B Ñ A does not annihilate 1. It follows that
the composite map A1 Ñ B

ei
ÝÑ A is nonzero on homotopy groups. Using the assumption

that A1 and A are atomic, we deduce that the composite map π˚A
1 Ñ π˚B

ei
ÝÑ π˚A is

an isomorphism, so that A and A1 are equivalent as E-modules.

Warning 3.6.7. In the situation of Corollary 3.6.6, A and A1 need not be isomorphic
as associative algebra objects of hModE.

Definition 3.6.8. Let E be a Lubin-Tate spectrum. We will say that an E-module M
is atomic if there exists an equivalence M » A, where A P AlgphModEq is atomic.

Remark 3.6.9. It follows from Proposition 3.5.1 and Corollary 3.6.6 that, up to
equivalence, there exists a unique atomic E-module. We will sometimes refer to this
E-module as the Morava K-theory associated to E, and denote it by Kpnq (where n is
the height of E).

Let E be a Lubin-Tate spectrum and let M be an E-module. If M is atomic,
then π˚M is isomorphic to the quotient pπ˚Eq{mpπ˚Eq as a graded module over the
homotopy ring π˚E (here m denotes the maximal ideal of the local ring π0E). However,
the converse is false in general:

Counterexample 3.6.10. Let E be a Lubin-Tate spectrum of height n “ 3 and let
x0, x1, x2 P π0E be a regular system of parameters. For 0 ď i ď 2, let Apiq denote the
cofiber of the map xi : E Ñ E, so that we have cofiber sequences

E Ñ Apiq
δpiq
ÝÝÑ ΣE.

Set A “ Ap0q bE Ap1q bE Ap2q, and let rA denote the fiber of the map

A
δp0qbδp1qbδp2q
ÝÝÝÝÝÝÝÝÝÑ pΣEq bE pΣEq bE pΣEq » Σ3E.

We then have a fiber sequence of E-modules Σ2E
ρ
ÝÑ rAÑ A which induces a short exact

sequence of abelian groups

0 Ñ π0E Ñ π2 rA
φ
ÝÑ π2AÑ 0

(since the homotopy groups of E and A are concentrated in even degrees). Because
the groups Extmπ0Epπ2A, π0Eq vanish for m P t0, 1u, this sequence splits uniquely: that
is, the map φ has a unique section ψ : π2AÑ π2 rA. Set ρ1 “ ρ` ψpuq P π2 rA, where u
is a nonzero element of π2A, and let M denote the cofiber of the map ρ1 : Σ2E Ñ rA.
Then π˚M is isomorphic to the quotient pπ˚Eq{mpπ˚Eq. However, M is not an atomic
E-module: for example, one can show that the tautological map M ÑM bE A induces
the zero map on homotopy groups, so that M cannot admit the structure of a (unital)
algebra object of hModE.
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We will also need to consider some generalizations of Definition 3.6.8.

Definition 3.6.11. Let E be a Lubin-Tate spectrum and let M be an E-module. We
will say that M is molecular if it is equivalent to direct sum of finitely many atomic
E-modules and suspensions of atomic E-modules. We let Modmol

E denote the full
subcategory of ModE spanned by the molecular E-modules.

Variant 3.6.12. Let E be a Lubin-Tate spectrum and let M be an E-module. We will
say that M is quasi-molecular if it is equivalent to a (not necessarily finite) direct sum
of atomic E-modules and suspensions of atomic E-modules.

Example 3.6.13. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization. Then the Thom spectrum ThQ is a molecular E-module if and only if the
map

cQ1 : κb Λ Ñ m{m2

of Construction 3.4.1 is an epimorphism.

Remark 3.6.14. Let M be an E-module. Then M is molecular if and only if it is both
quasi-molecular and perfect (see Proposition 2.9.4).

Remark 3.6.15. Let M be a molecular E-module. Then M is a dualizable object of
ModE ; let us denote its dual by M_. The module M_ is quasi-molecular (this follows
from the criterion of Corollary 3.6.4: note that if M has the structure of a left A-module
object of hModE, then M_ has the structure of a left Aop-module object of hModE)
and perfect, and is therefore also molecular (Remark 3.6.14).
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Chapter 4

Synthetic E-Modules

Let E be a Lubin-Tate spectrum of height n and let Modloc
E denote the 8-category

of Kpnq-local E-modules. In this section, we will construct a (symmetric monoidal)
embedding of Modloc

E into a larger 8-category SynE , which we refer to as the 8-category
of synthetic E-modules.

4.1 The 8-category SynE
We begin by introducing some definitions.

Definition 4.1.1. Let E be a Lubin-Tate spectrum, let Modmol
E Ď ModE be the 8-

category of molecular E-modules, and let S denote the8-category of spaces. A synthetic
E-module is a functor X : pModmol

E qop Ñ S which preserves finite products. We let SynE
denote the full subcategory of FunppModmol

E qop,Sq spanned by the synthetic E-modules.

The 8-category SynE is an example of a nonabelian derived 8-category, in the sense
of §HTT.5.5.8 . Its formal properties can be summarized as follows:

Proposition 4.1.2. Let E be a Lubin-Tate spectrum. Then:

p1q The 8-category SynE is presentable. In particular, SynE admits small colimits.

p2q The inclusion functor SynE ãÑ FunppModmol
E qop,Sq preserves small sifted colimits.

In other words, sifted colimits in SynE are computed “pointwise.”

p3q The Yoneda embedding j : Modmol
E ãÑ FunppModmol

E qop,Sq factors through SynE.
Moreover, the functor j : Modmol

E Ñ SynE preserves finite coproducts.

p4q Let C be an 8-category which admits small sifted colimits, and let FunΣpSynE , Cq be
the full subcategory of FunpSynE , Cq spanned by those functors which preserve small
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sifted colimits. Then composition with j induces an equivalence of 8-categories
FunΣpSynE , Cq Ñ FunpModmol

E , Cq.

p5q Let C be an 8-category which admits small colimits, and let LFunpSynE , Cq denote
the full subcategory of FunpSynE , Cq spanned by those functors which preserve small
colimits. Then composition with j induces a fully faithful functor LFunpSynE , Cq Ñ
FunpModmol

E , Cq, whose essential image consists of those functors Modmol
E Ñ C

which preserve finite coproducts.

Proof. Combine Propositions HTT.5.5.8.10 and HTT.5.5.8.15 .

Remark 4.1.3. Assertion p4q of Proposition 4.1.2 can be summarized informally by
saying that the 8-category SynE is obtained from Modmol

E by freely adjoining (small)
sifted colimits.

Remark 4.1.4. Let E be a Lubin-Tate spectrum. Then the 8-category of molecular
E-modules Modmol

E is additive (since it is a subcategory of a stable 8-category which is
closed under finite direct sums). It follows that SynE is a Grothendieck prestable 8-
category (see Proposition SAG.?? ). In particular, the functor Σ8 : SynE Ñ SppSynEq
is a fully faithful embedding. Here we can identify SppSynEq with the full subcategory
of FunppModmol

E qop,Spq spanned by the additive functors

Remark 4.1.5 (The Structure of SynE). Let E be a Lubin-Tate spectrum and let M
be a molecular E-module for which both π0M and π1M are nonzero (for example, we
could take M “ K ‘ ΣK, where K is an atomic E-module). Then every molecular
E-module can be obtained as a retract of Mk, for some integer k " 0. It follows
that the image of M under the Yoneda embedding j : Modmol

E Ñ SynE is a compact
projective generator for the 8-category SynE of synthetic E-modules. We therefore
obtain an equivalence of 8-categories SynE » LModcA, where A “ EndSynE pjpMqq is
the (connective) ring spectrum classifying endomorphisms of jpMq. Unwinding the
definitions, we can identify A with the connective cover of the endomorphism algebra
EndEpMq.

This explicit description of SynE will not be particularly useful for us: it is not
canonical (since it depends on a choice of the module M), and does not behave well
with respect to the symmetric monoidal structure of §4.4.

4.2 The Restricted Yoneda Embedding

We now investigate the relationship between modules and synthetic modules over a
Lubin-Tate spectrum E.
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Construction 4.2.1 (Restricted Yoneda Embedding). Let E be a Lubin-Tate spectrum
and let M be an E-module. We let SyrM s : pModmol

E qop Ñ S denote the functor given
informally by the formula SyrM spNq “ MapModE pM,Nq. It follows immediately from
the definitions that SyrM s is a synthetic E-module: that is, it preserves finite products.
We will refer to SyrM s as the synthetic E-module associated to M .

The construction M ÞÑ SyrM s determines a functor ModE Ñ SynE , which we will
denote by Sy and refer to as the restricted Yoneda embedding.

Remark 4.2.2. When restricted to the full subcategory Modmol
E of molecular E-modules,

the functor M ÞÑ SyrM s coincides with the usual Yoneda embedding j : Modmol
E Ñ

SynE Ď FunppModmol
E qop,Sq.

We begin by recording a few elementary properties of the construction M ÞÑ SyrM s.

Proposition 4.2.3. Let E be a Lubin-Tate spectrum and let Sy : ModE Ñ SynE be
the restricted Yoneda embedding. Then:

p1q The functor Sy preserves small filtered colimits.

p2q The functor Sy preserves small limits.

p3q The functor Sy preserves small coproducts.

Proof. Assertion p1q follows from the observation that every molecular E-module M is
a compact object of ModE (see Proposition 2.9.4), and assertion p2q is immediate. To
prove p3q, we note that p2q implies that the functor Sy preserves finite products. Since
the 8-categories ModE and SynE are both additive (Remark 4.1.4), it follows that Sy
preserves finite coproducts. Combining this observation with p1q, we conclude that Sy
preserves all small coproducts.

Proposition 4.2.4. Let E be a Lubin-Tate spectrum of height n and let α : M Ñ N
be a morphism of E-modules. Then the induced map SyrM s Ñ SyrN s is an equivalence
of synthetic E-modules if and only if α is a Kpnq-equivalence.

Proof. Let Kpnq denote an atomic E-module, and let Kpnq_ denote its E-linear dual.
The following assertions are equivalent:

paq The map SyrM s Ñ SyrN s is an equivalence of synthetic E-modules.

pbq For every molecular E-module P , the map of spaces

MapModE pP,Mq Ñ MapModE pP,Nqq

is a homotopy equivalence.
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pcq The map of spaces MapModE pKpnq
_,Mq Ñ MapModE pKpnq

_, Nq is a homotopy
equivalence.

pdq For every integer m ď 0, composition with α induces an isomorphism of abelian
groups

ExtmE pKpnq_,Mq Ñ ExtmE pKpnq_, Nq.

peq For every integer m, composition with α induces an isomorphism of abelian groups

ExtmE pKpnq_,Mq Ñ ExtmE pKpnq_, Nq.

pfq The map α induces an isomorphism of homotopy groups

π˚pKpnq bE Mq Ñ π˚pKpnq bE Nq.

pgq The map α is a Kpnq-local equivalence: that is, the induced map Kpnq bE M Ñ

Kpnq bE N is an equivalence.

The implications paq ô pbq ñ pcq ô pdq ð peq ô pfq ô pgq are easy. The implication
pcq ñ pbq follows from the fact that every molecular E-module can be obtained as a
direct sum of Kpnq_ and ΣKpnq_, and the implication peq ñ pdq follows from the
periodicity of E.

It follows from Proposition 4.2.4 that the restricted Yoneda embedding Sy : ModE Ñ
SynE factors (up to homotopy) through the Kpnq-localization functor L : ModE Ñ
Modloc

E . For this reason, we will generally confine our attention to the restriction
Sy |Modloc

E
, which (by slight abuse of notation) we will also denote by Sy.

Proposition 4.2.5. Let E be a Lubin-Tate spectrum. Then the restricted Yoneda
embedding Sy : Modloc

E Ñ SynE is a fully faithful embedding. Its essential image consists
of those synthetic E-modules X : pModmol

E qop Ñ S which satisfy the following additional
condition:

p˚q For every molecular E-module N , the canonical map XpΣNq Ñ ΩXpNq is a
homotopy equivalence.

Remark 4.2.6. The restricted Yoneda embedding Sy : Modloc
E Ñ SynE is not essentially

surjective. For example, if M is an E-module, then the construction

pN P Modmol
E q ÞÑ pπ0 MapModE pN,Mq P Set Ď Sq

determines a synthetic E-module, which we will denote by Sy♥rM s (see Notation 6.1.7).
The synthetic E-module Sy♥rM s never belongs to the essential image of the restricted
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Yoneda embedding, except in the trivial case where M is Kpnq-acyclic (in which case
we have SyrM s » Sy♥rM s » 0). The truncation Sy♥rM s is an example of a Milnor
module (Definition 6.1.1): that is, it is a discrete object of the 8-category SynE . We
will carry out a detailed study of Milnor modules in §6.

Proof of Proposition 4.2.5. Let C denote the full subcategory of SynE spanned by those
functors which satisfy condition p˚q. Note that C contains SyrM s for every E-module
M and is closed under limits in SynE . Moreover, for each object X P C, condition
p˚q supplies a canonical equivalence Ω ˝X » X ˝ Σ. Since the suspension functor Σ
induces an equivalence of Modmol

E with itself, it follows that the functor Ω : C Ñ C is
an equivalence of 8-categories. Applying Proposition HA.1.4.2.11 , we deduce that the
8-category C is stable.

Let F : ModE Ñ C denote the functor given by F pMq “ SyrM s. The functor Sy
preserves small limits (Proposition 4.2.3), so that F also preserves small limits. Since
domain and codomain of F are stable 8-categories, it follows that F also preserves finite
colimits (beware that this property is not shared by the functor Sy : ModE Ñ SynE).
Moreover, the functor F also preserves filtered colimits (Proposition 4.2.3), and so
preserves all small colimits.

We next prove the following:

paq Let M and N be E-modules, where N P Modloc
E . Then the canonical map

θM,N : MapModE pM,Nq Ñ MapSynE pSyrM s,SyrN sq “ MapCpF pMq, F pNqq

is a homotopy equivalence.

To prove paq, let us regard the E-module N as fixed. We will say that an E-module
M is good if the map θM,N is a homotopy equivalence. Using Yoneda’s lemma, we
see that every molecular E-module is good. Because the functor F preserves small
colimits, we conclude that the collection of good E-modules is closed under small
colimits. Let E Ď ModE denote the smallest full subcategory which contains Modmol

E

and is closed under small colimits, so that every object of E is good. Applying Corollary
HTT.5.5.2.9 , we deduce that the inclusion E ãÑ ModE admits a right adjoint: that is,
every object M P ModE fits into a fiber sequence M 1 ÑM ÑM2, where M 1 P E and
MapModE pP,M

2q is contractible for each P P E . In particular, the synthetic E-module
SyrM2s vanishes. Applying Proposition 4.2.4, we deduce that M2 is Kpnq-acyclic. We
therefore have a commutative diagram

MapModE pM,Nq
θM,N //

��

MapSynE pSyrM s,SyrN sq

��
MapModE pM

1, Nq
θM 1,N //MapSynE pSyrM 1s,SyrN sq
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where the vertical maps are homotopy equivalences (by virtue of our assumption that
N belongs to Modloc

E ). Since the map θM 1,N is a homotopy equivalence, we conclude
that θM,N is also a homotopy equivalence. This completes the proof of paq.

Note that the functor F : ModE Ñ C factors as a composition

ModE L
ÝÑ Modloc

E
F
ÝÑ C

where F “ F |Modloc
E

. The functor F also preserves small colimits, and paq guarantees
that F is faithful. Using Corollary HTT.5.5.2.9 , we deduce that F admits a right adjoint
G : C Ñ Modloc

E . Note that for every object X P C and every molecular E-module M ,
we have canonical homotopy equivalences

XpMq » MapCpF pMq, Xq » MapModloc
E
pM,GpXqq.

It follows that G is conservative, so that F and G are mutually inverse equivalences of
8-categories.

4.3 Hypercoverings

We now study a special class of colimits in ModE which are preserved by the
restricted Yoneda embedding Sy : ModE Ñ SynE .

Definition 4.3.1. Let E be a Lubin-Tate spectrum, let A be an atomic E-algebra, and
let M‚ be an augmented simplicial object of ModE . We will say that M‚ is A-split if
AbEM‚ is a split augmented simplicial object of the 8-category LModA (see Definition
HA.4.7.3.2 ).

Remark 4.3.2. Let A be an atomic E-algebra and let M‚ be an augmented simplicial
object of ModE . If M‚ is A-split, then M‚ bE N is also A-split, for every E-module N .

Proposition 4.3.3. Let E be a Lubin-Tate spectrum, let A be an atomic E-algebra,
and let M be an E-module. Then there exists an A-split augmented simplicial object
M‚ of ModE such that M´1 “M and Mn is quasi-molecular for n ě 0.

Proof. Let G : ModE Ñ LModA be the functor given by GpNq “ AbE N . Since A is
dualizable as an E-module, the functor G admits a left adjoint F : LModA Ñ ModE ,
given concretely by the formula F pXq “ A_ bA X. Set U “ F ˝ G, so that U is a
comonad on ModE . Then the construction Mk “ Uk`1pMq determines an augmented
simplicial object with the desired properties (note that the functor F carries each object
of LModA to a quasi-molecular object of ModE).

52



Proposition 4.3.4. Let E be a Lubin-Tate spectrum and let M‚ be an augmented
simplicial object of ModE. Suppose that there exists an atomic E-algebra A such that
M‚ is A-split. Then SyrM‚s is a colimit diagram in the 8-category SynE.

Proof. We prove a stronger assertion: for every molecular E-module N , the augmented
simplicial space SyrM‚spNq “ MapModE pN,M‚q is a colimit diagram. Since the category
∆op is sifted, the collection of those objects N P ModE which satisfy this condition is
closed under finite coproducts. We may therefore assume without loss of generality that
N » ΣmA_, where m is an integer and A_ denotes the E-linear dual of A. In this
case, we have an equivalence MapModE pN,M‚q » Ω8`mpA bE M‚q, which is a split
augmented simplicial object of S by virtue of our assumption that M‚ is A-split.

Corollary 4.3.5. Let E be a Lubin-Tate spectrum and let L : ModE Ñ Modloc
E denote

a left adjoint to the inclusion functor. Let M‚ be an augmented simplicial object of
ModE. If there exists an atomic E-algebra A for which M‚ is A-split, then LM‚ is a
colimit diagram in the 8-category Modloc

E .

Proof. Combine Propositions 4.3.4 and 4.2.5.

4.4 Smash Products of Synthetic E-Modules

Throughout this section, we let E denote a Lubin-Tate spectrum. We regard the
8-category Modloc

E as equipped with the symmetric monoidal structure given by the
localized smash product pbE (see §2.9). Our goal in this section is to construct a
compatible symmetric monoidal structure on the 8-category SynE of synthetic E-
modules. Our starting point is the following:

Proposition 4.4.1. Let E be a Lubin-Tate spectrum. If M and N are molecular
E-modules, then the relative smash product M bE N is also molecular.

Proof. Using the criterion of Corollary 3.6.4, we see that if M is quasi-molecular and N
is an arbitrary E-module, then the relative smash product M bE N is quasi-molecular.
If M and N are perfect E-modules, then M bE N is perfect. The desired result now
follows from Remark 3.6.14.

Corollary 4.4.2. The symmetric monoidal structure on Modloc
E restricts to a nonunital

symmetric monoidal structure on the full subcategory Modmol
E . In other words, there

is an essentially unique nonunital symmetric monoidal structure on the 8-category
Modmol

E for which the inclusion Modmol
E ãÑ Modloc

E has the structure of a nonunital
symmetric monoidal functor.

Warning 4.4.3. The nonunital symmetric monoidal structure on Modmol
E cannot be

promoted to a symmetric monoidal structure (note that the module E is not molecular).
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Applying the constructions of §HA.4.8.1 to the 8-category of synthetic E-modules
SynE “ PΣpModmol

E q we obtain the following result:

Proposition 4.4.4. Let E be a Lubin-Tate spectrum. Then there is an essentially unique
nonunital symmetric monoidal structure on the 8-category SynE with the following
features:

paq The Yoneda embedding j : Modmol
E ãÑ SynE is a nonunital symmetric monoidal

functor.

pbq The tensor product functor SynE ˆ SynE Ñ SynE preserves small colimits sepa-
rately in each variable.

Moreover, this nonunital symmetric monoidal structure is characterized by the following
universal property:

pcq Let C be a presentable 8-category equipped with a nonunital symmetric monoidal
structure. Assume that the tensor product Cˆ C Ñ C preserves small colimits
separately in each variable, and let LFunbnupSynE , Cq denote the 8-category of
nonunital symmetric monoidal functors from SynE to C which preserve small colim-
its. Then composition with j induces a fully faithful embedding LFunbnupSynE , Cq Ñ
FunbnupModmol

E , Cq, whose essential image is spanned by those nonunital symmetric
monoidal functors F : Modmol

E Ñ C which preserve finite coproducts.

Notation 4.4.5. Let E be a Lubin-Tate spectrum. We let ^ : SynE ˆ SynE Ñ SynE
denote the tensor product functor underlying the nonunital symmetric monoidal structure
of Proposition 4.4.4.

Applying part pcq of Proposition 4.4.4 in the case C “ Modloc
E , we deduce the

following:

Corollary 4.4.6. There is an essentially unique nonunital symmetric monoidal functor
F : SynE Ñ Modloc

E with the following properties:

paq The functor F preserves small colimits.

pbq The composite functor Modmol
E

j
ÝÑ SynE

F
ÝÑ Modloc

E is equivalent to the inclusion
(as nonunital symmetric monoidal functors from Modmol

E to Modloc
E ).

Unwinding the definitions, we see that the functor F of Corollary 4.4.6 can be
identified with the left adjoint of the restricted Yoneda embedding Sy : ModKE ãÑ SynE
of Construction 4.2.1. It follows formally that Sy inherits the structure of a lax nonunital
symmetric monoidal functor from Modloc

E to SynE . However, we can say more:

54



Proposition 4.4.7. The lax nonunital symmetric monoidal functor Sy : Modloc
E Ñ

SynE is a nonunital symmetric monoidal functor. In other words, for every pair of
objects M,N P Modloc

E , the canonical map ρM,N : SyrM s ^ SyrN s Ñ SyrM pbEN s is an
equivalence of synthetic E-modules.

Proof. Let A be an atomic E-algebra (see Proposition 3.5.1). Applying Proposition
4.3.3, we can choose a A-split augmented simplicial E-module M‚, where M´1 “ M
and Mn is quasi-molecular for each n ě 0. Note that M‚ bE N is also A-split (Remark
4.3.2). Applying Proposition 4.3.4, we deduce that the augmented simplicial objects
SyrM‚s and SyrM‚bEN s » SyrM‚pbEN s are colimit diagrams in the 8-category SynE .
Consequently, we can identify ρM,N with a colimit of morphisms of the form ρMn,N

for n ě 0. We may therefore replace M by Mn and thereby reduce to the case where
M is quasi-molecular. Note that for fixed N , the construction M ÞÑ ρM,N commutes
with filtered colimits. Since every quasi-molecular E-module can be written as a filtered
colimit of molecular E-modules, we may further reduce to the case where M is molecular.
Applying the same argument with the roles of M and N reversed, we can reduce to
the case where N is also molecular. In this case, the desired result follows immediately
from the definitions.

We now construct a unit with respect to the tensor product on SynE .

Notation 4.4.8. Let E be a Lubin-Tate spectrum. We let 1 denote the synthetic
E-module given by SyrEs.

Lemma 4.4.9. Let E be a Lubin-Tate spectrum. Then the construction X ÞÑ 1^X
determines a functor SynE Ñ SynE which is homotopic to the identity.

Proof. Since precomposition with the Yoneda embedding j : Modmol
E Ñ SynE induces

a fully faithful embedding LFunpSynE , SynEq Ñ FunpModmol
E , SynEq, it will suffice to

show that the functors j and 1 ^ j are equivalent: that is, to show that there is an
equivalence SyrM s » SyrEs ^ SyrM s depending functorially on M P Modmol

E . This is a
special case of Proposition 4.4.7.

Proposition 4.4.10. Let E be a Lubin-Tate spectrum. Then the 8-category SynE
admits an essentially unique symmetric monoidal structure extending the nonunital
symmetric monoidal structure of Corollary 4.4.6. Moreover, the unit object of SynE can
be identified with 1 “ SyrEs.

Proof. Combine Lemma 4.4.9 with Corollary HA.5.4.4.7 .

Variant 4.4.11. Let E be a Lubin-Tate spectrum. Then the nonunital symmetric
monoidal functor Sy : Modloc

E Ñ SynE can be promoted, in an essentially unique way,
to a symmetric monoidal functor.
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Proof. By virtue of Corollary HA.5.4.4.7 , it suffices to observe that the functor Sy
carries the unit object E P Modloc

E to the unit object 1 “ SyrEs of SynE .

4.5 Truncated Synthetic E-Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
In §4.2, we proved that the restricted Yoneda embedding Sy : Modloc

E Ñ SynE induces
an equivalence of the 8-category Modloc

E with a full subcategory of the 8-category
SynE of synthetic E-modules (Proposition 4.2.5). In this section, we consider some
other full subcategories of SynE which will play an important in our calculation of the
Brauer group BrpEq.

Definition 4.5.1. Let n ě 0 be an nonnegative integer. We will say that a synthetic
E-module X is n-truncated if, for every molecular E-module M , the space XpMq is
n-truncated (that is, the homotopy groups πmpXpMq, xq vanish for m ą n and every
choice of base point x P XpMq). We let SynďnE denote the full subcategory of SynE
spanned by the n-truncated synthetic E-modules.

Remark 4.5.2. A synthetic E-module X is n-truncated in the sense of Definition 4.5.1
if and only if it is n-truncated when viewed as an object of the 8-category SynE : that
is, if and only if the mapping space MapSynE pY,Xq is n-truncated, for every synthetic
E-module Y .

Remark 4.5.3. Let n ě 0 be an integer. Then the inclusion functor SynďnE ãÑ

SynE admits a left adjoint τďn : SynE Ñ SynďnE , given concretely by the formula
pτďnXqpMq “ τďnXpMq.

Remark 4.5.4. Let M be an E-module and let n be a nonnegative integer. Then the
associated synthetic E-module SyrM s P SynE is n-truncated if and only if it is zero
(this follows immediately from the criterion of Proposition 4.2.5.

Remark 4.5.5. We will carry out a detailed analysis of the category Synď0
E in §6.

We now study the composite functor

pτďn ˝ Syq : ModE Ñ SynďnE ,

where n is a nonnegative integer. Unlike the functor M ÞÑ SyrM s itself, the composite
functor τďn ˝ Sy is not fully faithful. However, it is close to being fully faithful provided
we restrict our attention to quasi-molecular E-modules.

Remark 4.5.6. Using Proposition 4.2.3, we see that the functor

pτďn ˝ Syq : ModE Ñ SynďnE
preserves filtered colimits and arbitrary coproducts.
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Proposition 4.5.7. Let n ě 0 be an integer and let M,N P ModE. If M is quasi-
molecular, then the canonical map

θ : MapModE pM,Nq Ñ MapSynďnE
pτďn SyrM s, τďn SyrN sq

exhibits the mapping space MapSynďnE
pτďn SyrM s, τďn SyrN sq as an n-truncation of

MapModE pM,Nq.

Proof. Write M as a coproduct
À

Mα, where each Mα is molecular. Using Remark
4.5.6, we can write θ as a product of maps

θα : MapModE pMα, Nq Ñ MapSynďnE
pτďn SyrMαs, τďn SyrN sq.

It will therefore suffice to show that each of the maps θα exhibits

MapSynďnE
pτďn SyrMαs, τďn SyrN sq » MapSynE pSyrMαs, τďn SyrN sq

as an n-truncation of the mapping space MapModE pMα, Nq. This follows immediately
from the definition of the synthetic E-module τďn SyrN s.

We now prove a dual version of Proposition 4.5.7, which is a bit less formal.

Proposition 4.5.8. Let n ě 0 be an integer and let M,N P ModE. If N is quasi-
molecular, then the canonical map

θ : MapModE pM,Nq Ñ MapSynďnE
pτďn SyrM s, τďn SyrN sq

exhibits the mapping space MapSynďnE
pτďn SyrM s, τďn SyrN sq as an n-truncation of

MapModE pM,Nq.

Proof. Fix an atomic algebra A P AlgpModEq (Proposition 3.5.1). Using Proposition
4.3.3, we can choose a A-split augmented simplicial E-module M‚ where M´1 “ M
and Mn is quasi-molecular for n ě 0. Let M‚ be the underlying simplicial object of M‚.
Then the map θ fits into a commutative diagram

τďn MapModE pM,Nq
θ //

��

MapSynE pτďn SyrM s, τďn SyrN sq

��
Tot τďn MapModE pM‚, Nq // Tot MapSynE pτďn SyrM‚s, τďn SyrN sq.

The bottom horizontal map is a homotopy equivalence by virtue of Proposition 4.5.7.
We will complete the proof by showing that the left and right vertical maps are also
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homotopy equivalences. For the right vertical map, this follows from Proposition 4.3.4.
To prove that the left vertical map is a homotopy equivalence, it will suffice to show
that the augmented cosimplicial space τďn MapModE pM‚, Nq is a limit diagram in the
8-category S. In fact, we claim that it is a split augmented cosimplicial object of S.
To see this, note that our assumption that N is quasi-molecular guarantees that we can
promote N to a left A-module object of ModE . We therefore have an equivalence of
augmented cosimplicial spaces

τďn MapModE pM‚, Nq » τďn MapLModApAbE M‚, Nq;

the desired result now follows from our assumption that M‚ is A-split.
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Chapter 5

Representations of Exterior
Algebras

Let E be a Lubin-Tate spectrum, let SynE denote the 8-category of synthetic
E-modules, and let Syn♥

E Ď SynE denote the full subcategory spanned by the discrete
objects. In §6, we will prove that Syn♥

E is equivalent to the abelian category of pZ{2Zq-
graded modules over an exterior algebra

Ź˚
pV q, where V » pm{m2q_ is the Zariski

tangent space to the Lubin-Tate ring π0E at its maximal ideal m Ď π0E (Theorem
6.6.6). To prove this result (and to make effective use of it), we will need some purely
algebraic facts about (graded) modules over exterior algebras, which we have collected
in this section.

5.1 Conventions

We begin by establishing some conventions.

Notation 5.1.1. Throughout this section, we let K˚ denote a commutative graded
ring with the following properties:

paq Every nonzero homogeneous element of K˚ is invertible.

pbq The graded component Kn is nonzero if and only if n is even.

We let κ “ K0 denote the subring of K˚ consisting of elements of degree zero. It follows
from paq and pbq that κ is a field, and that K˚ is isomorphic to a Laurent polynomial
ring κrt˘1s where t is homogeneous of degree 2. Beware that this isomorphism is not
canonical (it depends on the choice of a nonzero element t P K2).
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Example 5.1.2. Let E be a Lubin-Tate spectrum and let m Ď π0E be the maximal
ideal. Then the graded ring K˚ “ pπ˚Eq{mpπ˚Eq satisfies the requirements of Notation
5.1.1. For our ultimate applications, this is the example of interest.

Notation 5.1.3. We let Modgr
K˚

denote the abelian category of Z-graded modules over
K˚. We will refer to the objects of Modgr

K˚
simply as graded K˚-modules. Note that the

construction V ÞÑ pV0 ‘ V1q determines an equivalence of categories Modgr
K˚
Ñ Vectgr

κ ;
here Vectgr

κ is the category of pZ{2Zq-graded vector spaces over κ (see §2.8).

Notation 5.1.4. Let V be a graded K˚-module. For every integer n, we let V rns
denote the graded K˚-module given by the formula V rnsm “ Vm´n. Note that if n is
even, we have a canonical isomorphism V rns » V bκ K´n.

If V and W are graded K˚-modules, then the tensor product V bK˚ W inherits the
structure of a graded K˚-module. The construction pV,W q ÞÑ V bK˚ W determines
a monoidal structure on the category Modgr

K˚
. We will regard Modgr

K˚
as a symmetric

monoidal category by enforcing the usual Koszul sign rule: for graded K˚-modules V
and W , the symmetry constraint σV,W : V bK˚W »WbK˚V is given by σV,W pvbwq “
p´1qijpw b vq for v P Vi, w PWj .

Remark 5.1.5. Suppose we are given a nonzero element t P K2, which determines
an isomorphism of graded rings κrt˘1s » K˚. It follows that there is a unique ring
homomorphism θ : K˚ Ñ κ which is the identity on κ and satisfies θptq “ 1. In this case,
extension of scalars along θ induces an equivalence of symmetric monoidal categories
F : Modgr

K˚
Ñ Vectgr

κ . Note that the underlying equivalence of categories (obtained by
ignoring monoidal structures) is isomorphic to the functor V ÞÑ V0 ‘ V1 of Notation
5.1.3.

Warning 5.1.6. Let F : Modgr
K˚
Ñ Vectgr

κ be the equivalence of categories described in
Notation 5.1.3. Then F does not canonically admit the structure of a monoidal functor.
It is not hard to see that promoting F to a monoidal functor is equivalent to choosing
a nonzero element t P K2 (with the inverse equivalence given by the construction of
Remark 5.1.5).

5.2 Exterior Algebras

Throughout this section, we let K˚ denote a graded ring satisfying the requirements
of Notation 5.1.1 and we let κ “ K0 be the underlying field.

Notation 5.2.1. Let V be a vector space over κ. We let
Ź˚
κpV q denote the exterior

algebra on V . We regard
Ź˚
κpV q as a Z-graded Hopf algebra over κ, where each element

v P V is a primitive element of degree p´1q. We let
Ź˚
K˚
pV q denote the tensor product
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K˚ bκ
Ź˚
pV q, which we regard as a Z-graded Hopf algebra over K˚ (in other words,

as a Hopf algebra object of the abelian category Modgr
K˚

).

Remark 5.2.2 (Duality). In the situation of Notation 5.2.1, suppose that the vector
space V is finite-dimensional. In this case, the exterior algebra

Ź˚
K˚
pV q is a dualizable

object of Modgr
K˚

. It follows that the dual of
Ź˚
K˚
pV q inherits the structure of a Hopf

algebra object of Modgr
K˚

. In fact, there is a canonical Hopf algebra isomorphism
Ź˚
K˚
pV q_ »

Ź˚
K˚
pV 1q, where V 1 “ HomκpV,K´2q. This isomorphism is uniquely

determined by the requirement that the composite map

V bκ V
1 Ñ

ľ˚

K˚
pV q bK˚

ľ˚

K˚
pV 1q

»
ľ˚

K˚
pV q bK˚

ľ̊

K˚

pV q_

Ñ K˚

coincides with the tautological pairing V bκ V 1 Ñ K´2.

Remark 5.2.3. Let t be a nonzero element of K2, and let F : Modgr
K˚
Ñ Vectgr

κ be
the symmetric monoidal equivalence of Remark 5.1.5. For every vector space V over κ,
we have a canonical isomorphism F p

Ź˚
K˚
pV qq »

Ź˚
κ in the category of pZ{2Zq-graded

Hopf algebras over κ.

In the situation of Notation 5.2.1, the bialgebra structure on
Ź˚
K˚
pV q is unique in

the following sense:

Proposition 5.2.4. Let H be a bialgebra object of Modgr
K˚

. Suppose that there exists
an isomorphism of graded K˚-algebras H »

Ź˚
K˚
pV q, for some finite-dimensional vector

space V over κ. Then there also exists an isomorphism of bialgebras H »
Ź˚
K˚
pV q.

Remark 5.2.5. In the statement of Proposition 5.2.4, we do not assume a priori that
the comultiplication on H is (graded) commutative: this is part of the conclusion.

Proof of Proposition 5.2.4. Since V is finite-dimensional, the existence of an algebra
isomorphism α :

Ź˚
K˚
pV q Ñ H guarantees that H finite-dimensional in each degree.

Let H_ denote the dual of H (in the symmetric monoidal category Modgr
K˚

), so that
H_ inherits the structure of a graded bialgebra over K˚. Let ε : H Ñ K˚ be the counit
map, let I be the kernel of ε, and let I{I2 be the space of indecomposable elements
of H. Note that there is a unique graded K˚-algebra homomorphism

Ź˚
K˚
pV q Ñ K˚

(which annihilates each element of V ). Consequently, α induces isomorphisms
ľą0

K˚
pV q » I K˚ bκ V » I{I2,
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in the category of graded K˚-modules, where we regard V as concentrated in degree
p´1q. Let W Ď H_ be the subspace of primitive elements, so that we have a canonical
isomorphism W » K˚ bκ V

_. It follows that W is concentrated in odd degrees.
For every pair of elements w,w1 P W , the supercommutator ww1 ` w1w P H_ is a
primitive element of even degree, and therefore vanishes. It follows that the inclusion
W ãÑ H_ extends to a graded algebra homomomorphism β :

Ź˚
K˚
pW´1q Ñ H_.

Since W consists of primitive elements, the map β is a bialgebra homomorphism. Set
W 1 “ HomκpW´1,K´2q. Passing to duals, we obtain a bialgebra homomorphism

β_ : H Ñ
ľ˚

K˚
pW´1q

_ »
ľ˚

K˚
pW 1q

(where the second isomorphism is supplied by Remark 5.2.2). By construction, the com-
posite map

Ź˚
K˚
pV q

α
ÝÑ H

β_
ÝÝÑ

Ź˚
K˚
pW 1q induces an isomorphism on indecomposables

and is therefore an isomorphism. Since α is an isomorphism, it follows that β_ is also
an isomorphism.

Definition 5.2.6. Let V be a vector space over κ. We let MpV q denote the abelian
category of Z-graded modules over the exterior algebra

Ź˚
K˚
pV q.

Remark 5.2.7. Let V be a vector space over κ. Unwinding the definitions, we
see that the datum of an object M P MpV q is equivalent to the datum of a pair
pM˚, tdvuvPV q, where M˚ is a graded K˚-module and tdvuvPV is a collection of K˚-linear
maps dv : M˚ ÑM˚´1 satisfying the identities

d2
v “ 0 dv`v1 “ dv ` dv1 dλv “ λdv.

Remark 5.2.8. Let V be a vector space over κ. The Hopf algebra structure on the
exterior algebra

Ź˚
K˚
pV q determines a symmetric monoidal structure on the category

MpV q. We will denote the underlying tensor product functor by

bK˚ :MpV q ˆMpV q ÑMpV q.

Concretely, it is described by the formula

pM˚, tdvuvPV q bK˚ pM
1
˚, td

1
vuvPV q “ pM˚ bK˚ M

1
˚, td

2
vuvPV q,

where d2v is given by the graded Leibniz rule d2vpxb yq “ pdvpxq b yq ` p´1qipxb d1vpyqq
for x PMi.
Remark 5.2.9. Let V be a vector space over κ. We let AlgpMpV qq denote the category
of associative algebra objects of MpV q (where MpV q is equipped with the symmetric
monoidal structure of Remark 5.2.8). Concretely, we can identify objects of AlgpMpV qq
with pairs pA˚, tdvuvPV q, where A˚ is a graded K˚-algebra and tdvuvPV is a collection
of K˚-linear derivations A˚ Ñ A˚´1 satisfying the identities

d2
v “ 0 dv`v1 “ dv ` dv1 dλv “ λdv.
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5.3 Clifford Algebras

Throughout this section, we let K˚ denote a graded ring satisfying the requirements
of Notation 5.1.1 and we let κ “ K0 be the underlying field. For each vector space V
over κ, we let MpV q denote the abelian category of Definition 5.2.6.

Definition 5.3.1. Let V be a finite-dimensional vector space over κ. We will say that
an object M PMpV q is atomic if, as a module over the exterior algebra

Ź˚
K˚
pV q, it is

freely generated by a single homogeneous element of degree dimκpV q.
We will say that an algebra A P AlgpMpV qq is atomic if it is atomic when regarded

as an object ofMpV q. We let AlgatmpMpV qq denote the full subcategory of AlgpMpV qq
spanned by the atomic algebra objects of MpV q.

Our goal in this section is to show that the category AlgatmpMpV qq has a very
simple structure (Corollary 5.3.6).

Construction 5.3.2 (Clifford Algebras). Let V be a finite-dimensional vector space
over κ and let q : V _ Ñ K2 be a quadratic form. We let ClqpV _q denote the quotient of
the free K˚-algebra generated by K˚ b V _, subject to the relations w2 “ qpwq for each
w P V _. We regard ClqpV _q as a graded K˚-algebra, where each generator w P V _ is
homogeneous of degree 1. We refer to ClqpV _q as the Clifford algebra of q.

For each v P V , we let dv : ClqpV _q˚ Ñ ClqpV _q˚´1 denote the unique K˚-linear
derivation satisfying the identity dvpwq “ xv, wy, for v P V and w P V _ (here xv, wy P κ
denotes the scalar obtained by evaluating w on v). An elementary calculation shows
that d2

v “ 0 for each v P V , so we can regard pClqpV _q, tdvuvPV q as an algebra object of
the category MpV q.

Remark 5.3.3. Let q : V _ Ñ K2 be as in Construction 5.3.2, and let t be a nonzero
element of K2. Then the symmetric monoidal equivalence Modgr

K˚
Ñ Vectgr

κ of Notation
5.1.3 carries ClqpV _q to the usual pZ{2Zq-graded Clifford algebra of the quadratic form
t´1q : V _ Ñ κ (see Example 2.8.6).

Remark 5.3.4. Let q : V _ Ñ K2 be as in Construction 5.3.2. The following conditions
are equivalent:

paq The quadratic form q is nondegenerate: that is, the associated bilinear form
bpx, yq “ qpx` yq ´ qpxq ´ qpyq induces an isomorphism V _ Ñ K2 bκ V .

pbq The Clifford algebra ClqpV _q is an Azumaya algebra object of the symmetric
monoidal category MpV q.

This follows immediately from Remark 5.3.3 and Example 2.8.6.

Proposition 5.3.5. Let V be a finite-dimensional vector space over κ. Then:
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p1q For each quadratic form q : V _ Ñ π2K, the Clifford algebra ClqpV _q is an atomic
algebra object of MpV q.

p2q Let A be an atomic algebra object of MpV q. Then there exists an isomorphism
A » ClqpV _q, for some quadratic form q : V _ Ñ π2K.

p3q Let q, q1 : V _ Ñ π2K be quadratic forms. Then there exists a morphism from
ClqpV _q to Clq1pV _q (as algebra objects of MpV q) if and only if q “ q1. If such a
morphism exists, then it is unique (and is an isomorphism).

Corollary 5.3.6. Let V be a finite-dimensional vector space over κ. Then the con-
struction q ÞÑ ClqpV _q induces an equivalence of categories from the set of quadratic
forms q : V _ Ñ K2 (which we regard as a category having only identity morphisms) to
the category AlgatmpMpV qq of atomic algebras in MpV q.

Proof of Proposition 5.3.5. We first prove p1q. Let q : V _ Ñ K2 be a quadratic form.
Let tviu1ďiďn be a basis for V and tv_i u1ďiďn the dual basis for V _. For 1 ď i ď n,
let dvi denote the associated derivation of ClqpV _q (see Construction 5.3.2). For each
I “ ti1 ă i2 ă ¨ ¨ ¨ ă iku Ď t1, . . . , nu, we define

v_I “ v_i1 ¨ ¨ ¨ v
_
ik
P ClqpV _q dI “ dvi1dvi2 ¨ ¨ ¨ dvik .

Note that the elements v_I form a basis for ClqpV _q as a module over K˚. A simple
calculation shows that dIv_t1,...,nu “ ˘v

_

I
, where I “ t1, . . . , nu ´ I denotes the comple-

ment of I. It follows that the element v_
t1,...,nu P ClqpV _qn freely generates ClqpV _q as

a module over
Ź˚
K˚
pV q, so that ClqpV _q is atomic.

We next prove p2q. Let A “ pA˚, tdvuvPV q be an atomic algebra object of MpV q.
We will abuse notation by identifying K˚ with its image in A. For each element w P V _,
set wK “ tv P V : xv, wy “ 0u and let Aw denote the subalgebra of A consisting of those
elements which are annihilated by the derivations tdvuvPwK . Our assumption that A is
atomic guarantees that there is a unique element w P Aw1 such that dvpwq “ xv, wy P κ,
and that Aw » K˚‘K˚w. In particular, the element w2 P Aw2 belongs to K2. The map
pw P V _q ÞÑ pw2 P K2q determines a quadratic form q : V _ Ñ K2. By construction,
there is a unique graded K˚-algebra homomorphism ρ : ClqpV _q Ñ A˚ satisfying
ρpwq “ w for w P V _. For each v P V , let us abuse notation by using the symbol dv to
also denote the corresponding derivation of ClqpV _q, so that the maps ρ ˝ dv and dv ˝ ρ
are K˚-linear derivations of ClqpV _q into A˚. By construction, these derivations agree
on V _ Ď ClqpV _q1. Since V _ generates ClqpV _q as an algebra over K˚, it follows that
ρ ˝ dv “ dv ˝ ρ for each v P V : that is, ρ is a morphism of algebra objects of MpV q.

Let x P An freely generate A as a module over
Ź˚
K˚
pV q. Let I “ t1, . . . , nu and

write ρpv_I q “ ηx for some η P
Ź˚
K˚
pV q. We then have dIpηxq “ ρpdIv

_
I q “ ρp˘1q ‰ 0.
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It follows that η is not annihilated by the product v1v2 ¨ ¨ ¨ vn P
Ź˚
K˚
pV q and is therefore

invertible, so that ρ is an isomorphism. This completes the proof of p2q.
We now prove p3q. Let q, q1 : V _ Ñ K2 be quadratic forms and let w be an element

of V _. Note that, when regarded as an element of either ClqpV _q or Clq1pV _q, w is
characterized by property that dvpwq “ xv, wy for each v P V . It follows that any
morphism ρ : ClqpV _q Ñ Clq1pV _q in AlgpMpV qq must restrict to the identity on V _.
It follows immediately that such a morphism ρ is uniquely determined, and can exist
only if q “ q1.

5.4 The Fiber Functor of an Atomic Algebra

Throughout this section, we let K˚ denote a graded ring satisfying the requirements
of Notation 5.1.1 and we let κ “ K0 be the underlying field.

Definition 5.4.1. Let V be a finite-dimensional vector space. We will say that a
Modgr

K˚
-linear monoidal functor F :MpV q Ñ Modgr

K˚
is a fiber functor if it preserves

small limits and colimits. The collection of fiber functors F :MpV q Ñ Modgr
K˚

forms a
category which we will denote by F ib.

Our goal in this section is to show that the category of fiber functors F ib can be
identified with the category AlgatmpMpV qq studied in §5.3 (Proposition 5.4.4).

Construction 5.4.2. Let V be a vector space over κ. For each associative algebra object
A “ pA˚, tdvuvPV q of the category MpV q, we define a functor µA :MpV q Ñ Modgr

K˚
by

the formula
µApMqn “ HomMpV qpK˚rns,M bK˚ Aq.

Note that if A is an algebra object of Modgr
Ź˚
K˚
pV q

, then the multiplication on A

determines natural maps

µApMq bK˚ µApNq Ñ µApM bK˚ Nq

which endow µA with the structure of a lax monoidal functor.

Proposition 5.4.3. Let V be a finite-dimensional vector space over κ and let A P

AlgpMpV qq. The following conditions are equivalent:

paq The lax monoidal functor µA of Construction 5.4.2 is monoidal.

pbq The algebra A is atomic (in the sense of Definition 5.3.1).

65



Proof of Proposition 5.4.3. Assume first that condition paq is satisfied. Then there exists
an isomorphism µApK˚q » K˚, so that A ‰ 0. Let

Ź˚
K˚
pV q_ denote the K˚-linear dual

of
Ź˚
K˚
pV q. For any M PMpV q, we have canonical isomorphisms

µAp
ľ˚

K˚
pV q_ bK˚ Mqn » HomMpV qpK˚rns,

ľ˚

K˚
pV q_ bK˚ M bK˚ Aq

» HomMpV qpΛ˚K˚pV qrns,M bK˚ Aq

» pM bK˚ Aqn.

Taking M “ K˚, we obtain a canonical isomorphism µApΛ˚K˚pV q
_q » A. Since the

functor µA is monoidal, we have A-linear isomorphisms

M bK˚ A » µAp
ľ˚

K˚
pV q_ bK˚ Mq

» µAp
ľ˚

K˚
pV q_q bK˚ µApMq

» AbK˚ µApMq.

In particular, if M is finite-dimensional in each degree, then AbK˚ µApMq is finitely
generated as an A-module, so that µApMq is also finite-dimensional in each degree.
Applying this observation in the special case M “

Ź˚
K˚
pV q_, we conclude that A is

finite-dimensional in each degree.
If M is a graded K˚-module, we define

dimK˚pMq “ dimκpM0q ` dimκpM1q P Zě0 Y t8u.

For M PMpV q, the preceding calculation gives

dimK˚pMq dimK˚pAq “ dimK˚pAqdimK˚pµApMqq.

Since we have shown above that 0 ă dimK˚pAq ă 8, we can divide by dimK˚pAq to
obtain dimK˚pMq “ dimK˚pµApMqq.

We now show that the functor µA is exact. For every exact sequence

0 ÑM 1 ÑM ÑM2 Ñ 0

in the abelian category MpV q, we evidently have an exact sequence of graded K˚-
modules

0 Ñ µApM
1q Ñ µApMq

u
ÝÑ µApM

2q;

we wish to show that u is surjective. Using a direct limit argument, we can reduce to
the case where dimK˚pMq ă 8. In this case, the equality dimK˚pMq “ dimK˚pM

1q `

dimK˚pM
2q guarantees that dimK˚pµApMqq “ dimK˚pµApM

1qq ` dimK˚pµApM
2qq, so

that the map u is surjective as desired.
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Let A_ denote the K˚-linear dual of A, which we regard as an object of MpV q.
Since dimK˚pAq ă 8, we have canonical isomorphisms µApMqn » HomMpV qpA

_rns,Mq.
Consequently, the exactness of the functor µA guarantees that A_ is projective when
regarded as a module over

Ź˚
K˚
pV q. Note that every projective

Ź˚
K˚
pV q-module is

free, and the existence of an isomorphism µApK˚q » K˚ guarantees that A_ is freely
generated by a homogeneous element of degree 0. It follows that A »

Ź˚
K˚
pV q_ is

freely generated by a homogeneous element of degree n “ dimκpV q. This completes the
proof that paq ñ pbq.

Now suppose that pbq is satisfied; we will prove paq. Note that pbq guarantees
that A is dualizable as a graded K˚-module, and that the dual A_ is isomorphic to
Ź˚
K˚
pV q (as a

Ź˚
K˚
pV q-module). It follows that µA is isomorphic to the forgetful functor

MpV q Ñ Modgr
K˚

as a functor (but not necessarily as a lax monoidal functor). We first
claim that µA preserves unit objects: that is, the canonical map u : K˚ Ñ µApK˚q is
an isomorphism. Since µApK˚q is abstractly isomorphic to K˚, it will suffice to show
that u is nonzero. This is clear, since u is the unit map for an algebra structure on
µApK˚q ‰ 0.

To complete the proof that µA is monoidal, it will suffice to show that for every pair
of objects M,N PMpV q, the canonical map

θM,N : µApMq bK˚ µApNq Ñ µApM bK˚ Nq.

Since the construction pM,Nq ÞÑ θM,N commutes with filtered colimits, we may assume
without loss of generality that dimK˚pMq, dimK˚pNq ă 8. Because the construction
pM,Nq ÞÑ θM,N is exact in each variable, we may further reduce to the case where M
and N are simple modules over

Ź˚
K˚
pV q. Moreover, the functor µA commutes with

shifts, so we can reduce to the case M » N » K˚. In this case, we wish to show that
the multiplication map µApK˚q bK˚ µApK˚q Ñ µApK˚q is an isomorphis. This follows
from the fact that the unit map K˚ Ñ µApK˚q is an isomorphism.

Proposition 5.4.4. Let V be a finite-dimensional vector space over κ. Then the
construction A ÞÑ µA induces an equivalence of categories AlgatmpMpV qq Ñ F ib.

Proof. Let F :MpV q Ñ Modgr
K˚

be an object of F ib. Since F is a Modgr
K˚

-linear functor
which preserves small limits, it is given by the formula F pMqn “ HomMpV qpCrns,Mq
for some object C PMpV q. The lax monoidal structure on F exhibits C as a coalgebra
object of MpV q. Moreover, since F preserves colimits, the coalgebra C is a finitely
generated projective module over

Ź˚
K˚
pV q. Let A “ C_ be the K˚-linear dual of C,

which we regard as an algebra object of MpV q. Then F » µA, so our assumption
that F is monoidal guarantees that A is atomic (Proposition 5.4.3). Unwinding the
definitions, we see that the construction F ÞÑ A determines a homotopy inverse to the
functor µ : AlgatmpMpV qq Ñ F ib.
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5.5 Extensions in MpV q

Throughout this section, we let K˚ denote a graded ring satisfying the requirements
of Notation 5.1.1 and we let κ “ K0 be the underlying field. Our goal in this section is to
compute some Ext-groups in the abelian categoryMpV q, where V is a finite-dimensional
vector space over κ.

Construction 5.5.1. Let V be a vector space over κ. For each element w P V _, let
Mw denote the direct sum K˚r´1s ‘K˚, whose elements we identify with pairs px, yq
for x, y P K˚. We regard Mw as a

Ź˚
K˚
pV q-module, where an element v P V acts on

Mw via the formula vpx, yq “ xv, wypy, 0q. We have an evident exact sequence

0 Ñ K˚r´1s ÑMw Ñ K˚ Ñ 0

in the abelian category MpV q, which determines an extension class

γpwq P Ext1
MpV qpK˚,K˚r´1sq.

Our next goal is to show that Construction 5.5.1 induces a vector space isomorphism

γ : V _ Ñ Ext1
MpV qpK˚,K˚r´1sq.

For later reference, it will be convenient to formulate a stronger version of this result.

Notation 5.5.2. Let V be a vector space over κ. For every pair of integers i, j P Z,
we let Hi,jpV q denote the group ExtiMpV qpK˚,K˚rjsq (by convention, these groups
vanish for i ă 0). Note that the canonical isomorphisms K˚rjs bK˚ K˚rj1s determine a
multiplication map

Hi,jpV q ˆHi1,j1pV q “ ExtiMpV qpK˚,K˚rjsq ˆ Exti1MpV qpK˚,K˚rj
1sq

Ñ Exti`i1MpV qpK˚,K˚rj ` j
1sq

“ Hi`i1,j`j1pV q

which endows H˚,˚pV q with the structure of a bigraded ring; moreover, it satisfies the
bigraded commutative law

xy “ p´1qii1`jj1yx for x P Hi,jpV q and y P Hi1,j1pV q

Note that we have a canonical isomorphism of graded rings H0,˚pV q » K´˚.

Construction 5.5.3 (The Koszul Complex). Let V be a finite-dimensional vector
space over κ. For every pair of integers m and n, we let Kmn pV q denote the graded
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vector space given by SymmpV _q bκ
Źn´m

pV _q. We regard the sum
À

m,nK
m
n pV q as

a commutative differential (bi)graded algebra, whose differential d of bidegree p1, 0q is
given on generators by the identity map

K0
1pV q “

ľ1
pV _q

id
ÝÑ Sym1pV _q “ K1

1pV q.

We regard the pair pK˚˚, dq as a cochain complex

K0
˚pV q

d
ÝÑ K1

˚pV q
d
ÝÑ K2

˚pV q Ñ ¨ ¨ ¨

in the category of Z-graded vector spaces over κ.

Lemma 5.5.4. Let V be a finite-dimensional vector space over κ. Then the unit map
κÑ K˚˚pV q is a quasi-isomorphism. In other words, the Koszul complex

K0
˚pV q

d
ÝÑ K1

˚pV q
d
ÝÑ K2

˚pV q Ñ ¨ ¨ ¨

is an acyclic resolution of κ Ď K0
˚pV q.

Proof. Decomposing the Koszul complex K˚˚pV q as a tensor product, we can further
reduce to the case where V is one-dimensional, so that the exterior algebra

Ź˚
pV _q can

be identified with the algebra A “ κrεs{pε2q. In this case, the Koszul complex K˚˚pV q
can be identified with the acyclic chain complex A ε

ÝÑ A
ε
ÝÑ A

ε
ÝÑ ¨ ¨ ¨ .

Remark 5.5.5. Let V be a finite-dimensional vector space over κ. For each n ě 0,
we can identify the nth term of the Koszul complex Kn˚pV q with the graded vector
space Homκp

Ź˚
pV q,SymnpV _qrnsq, where

Ź˚
pV q is equipped with the grading where

each element of V is homogeneous of degree p´1q. In particular, each Kn˚pV q can be
regarded as a graded module over

Ź˚
pV q, and the differentials of the Koszul complex

are
Ź˚
pV q-linear.

Proposition 5.5.6. Let V be a finite-dimensional vector space over κ. Then the map
γ : V _ Ñ Ext1

MpV qpK˚,K˚r´1sq of Construction 5.5.1 extends to a collection of maps

γi,j : K´i´j bκ SymipV _q Ñ ExtiMpV qpK˚,K˚rjsq

which induce an isomorphism of bigraded rings K˚ bκ Sym˚pV _q Ñ H˚,˚pV q.

Proof. It follows from Lemma 5.5.4 (and Remark 5.5.5) that we can regard the chain
complex

K˚ bκ K0
˚pV q Ñ K˚ bκ K1

˚pV q Ñ ¨ ¨ ¨
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as an acyclic resolution of K˚ in the abelian category MpV q. Moreover, for each object
M PMpV q, we have a canonical isomorphism

HomMpV qpM,K˚ bκ Kn˚pV qq » HomModgr
K˚
pM,K˚ bκ SymnpV _qrnsq.

It follows that each K˚ bκ Kn˚pV q is an injective object of the abelian category MpV q,
so that the Ext-groups Ext˚MpV qpK˚,K˚rjsq can be described as the cohomology of a
cochain complex whose ith term is given by

HomMpV qpK˚,K˚rjs bκ Ki˚pV qq » HomModgr
K˚
pK˚r´js,K˚ bκ SymipV _qrisq

» K´i´j bκ SymipV _q.

The differentials in this chain complex are trivial (which follows either by inspection or
by considerations of degree), so we obtain isomorphisms γi,j : K´i´j bκ SymipV _q Ñ
ExtiMpV qpK˚,K˚rjsq. Since the unit map K˚ Ñ K˚

˚ pV q is a quasi-isomorphism of
differential graded algebras, the isomorphisms γi,j are multiplicative: that is, they give
rise to an isomorphism of bigraded rings K˚ bκ Sym˚pV _q » H˚,˚pV q. We leave it to
the reader to verify that the map γ1,´1 agrees with the description given in Construction
5.5.1.

5.6 Automorphisms of MpV q

Throughout this section, we let K˚ denote a graded ring satisfying the requirements
of Notation 5.1.1 and we let κ “ K0 be the underlying field. Let V be a finite-dimensional
vector space over κ. Our goal in this section is to analyze the automorphism group
of MpV q as a Modgr

K˚
-linear monoidal category. Our first step is to filter out those

automorphisms which arise from automorphisms of the vector space V itself.

Definition 5.6.1. Let V be a vector space over κ and let F : MpV q ÑMpV q be a
Modgr

K˚
-linear monoidal functor which is exact. Then F induces a κ-linear map

DF : V _ γ
ÝÑ Ext1

MpV qpK˚,K˚r´1sq F
ÝÑ Ext1

MpV qpK˚,K˚r´1sq γ´1
ÝÝÑ V _,

where γ is the isomorphism of Construction 5.5.1. We will say that F is normalized if
DF is the identity map.

We now refine Construction 5.4.2 to produce some examples of normalized functors.

Construction 5.6.2. Let V be a finite-dimensional vector space over κ and let
A “ pA˚, tdvuvPV q be an atomic algebra object of MpV q. For each M P MpV q,
postcomposition with the map

´pidM bK˚dvq : M bK˚ AÑM bK˚ Ar1s
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determines a map Bv : µApMq Ñ µApMqr1s in MpV q. We will regard the pair
pµApMq, tBvuvPV q as an object of the category MpV q, which we will denote by µBApMq.
It follows from Proposition 5.4.3 (and its proof) that the construction M ÞÑ µBApMq
determines a Modgr

K˚
-linear monoidal exact functor from the category MpV q to itself.

Example 5.6.3. Let V be a finite-dimensional vector space over κ and suppose we are
given a pair of quadratic forms q, q1 : V _ Ñ K2. Set A “ ClqpV _q and A1 “ Clq1pV _q.
Then the tensor product A bK˚ A1 can be identified with Clq‘q1pV _ ‘ V _q, where
q‘q1 : V _‘V _ Ñ K2 denotes the quadratic form given by the formula pq‘q1qpw‘w1q “
qpwq ` q1pw1q. The antidiagonal embedding p´ id‘ idq : V _ Ñ V _ ‘ V _ induces an
isomorphism from Clq`q1pV _q to µBA1pAq Ď AbK˚ A

1.

Proposition 5.6.4. Let V be a finite-dimensional vector space over κ and let A be an
atomic algebra object of MpV q. Then the functor µBA :MpV q ÑMpV q of Construction
5.6.2 is normalized (in the sense of Definition 5.6.1).

Proof. Write A “ pA˚, tdvuvPV q. For w P V _, let Mw be as in Construction 5.5.1.
Unwinding the definitions, we see that µApMwq can be identified with the collection of
those elements px, yq P Ar´1s ‘A satisfying

“ dvx` xv, wyy “ 0 dvy “ 0

for all v P V and y P Ai. Using the exactness of the sequence

0 Ñ K˚r´1s Ñ µApMwq Ñ K˚ Ñ 0,

we see that µApMwq1 contains a unique element of the form px, 1q; here x is an element
of A1 satisfying dvx “ xv, wy for v P V . We then compute Bvpx, 1q “ ´p´dvpxq, dvp1qq “
pxv, wy, 0q, so that µApMwq is isomorphic to Mw as an extension of K˚ by K˚r´1s.

Proposition 5.6.5. Let V be a finite-dimensional vector space over the field κ, and let
AutbnmpMpV qq denote the category of normalized Modgr

K˚
-linear monoidal equivalences

of MpV q with itself. Then the functor A ÞÑ µBA of Construction 5.6.2 determines an
equivalence of categories

AlgatmpMpV qq Ñ AutbnmpMpV qq.

Proof. We first note that if A P AlgatmpMpV qq, then A is isomorphic to
Ź˚
K˚
pV q_

as an object of MpV q (see the proof of Proposition 5.4.3), so that µBA is isomorphic
to the identity as a functor from the category MpV q to itself (though not necessarily
as a monoidal functor). In particular, µBA is an equivalence of categories. We have
already seen that µBA is a normalized Modgr

K˚
-linear monoidal functor (Proposition
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5.6.4), so the construction A ÞÑ µBA carries AlgatmpMpV qq into AutbnmpMpV qq. Let
U : MpV q Ñ Modgr

K˚
be the forgetful functor and let F ib be as in Definition 5.4.1.

Then composition with U determines a functor AutbnmpMpV qq Ñ F ib. It follows from
Proposition 5.4.4 that the composition

AlgatmpMpV qq Ñ AutbnmpMpV qq Ñ F ib

is an equivalence of categories. Note that the category AlgatmpMpV qq is a groupoid
(Corollary 5.3.6), so that the category F ib is also a groupoid. We will complete the
proof by showing that the forgetful functor AutbnmpMpV qq Ñ F ib is fully faithful.

Fix a pair of normalized Modgr
K˚

-linear monoidal equivalences F, F 1 :MpV q ÑMpV q
and let α : U ˝ F 1 Ñ U ˝ F be a Modgr

K˚
-linear monoidal functor; we wish to show that

α can be promoted uniquely to a Modgr
K˚

-linear monoidal functor α : F 1 Ñ F . The
uniqueness of α is immediate. To prove existence, we can replace F by F ˝ F 1´1 and
thereby reduce to the case where F 1 “ id. Since the morphism α is an isomorphism
(because F ib is a groupoid), we can reduce to the case U ˝F “ U and α “ id. In this case,
the functor F is given by restriction of scalars along some map f :

Ź˚
K˚
pV q Ñ

Ź˚
K˚
pV q

of graded K˚-algebras. Because the functor F is monoidal, the map f is a Hopf algebra
homomorphism, and therefore obtained by applying the functor

Ź˚
K˚
p‚q to some κ-linear

map f0 : V Ñ V . Our assumption that F is normalized guarantees that f0 “ idV , so
that F is the identity functor as desired.

Remark 5.6.6. Let V be a finite-dimensional vector space over κ and let AutbnmpMpV qq
be defined as in Proposition 5.6.5. Then AutbnmpMpV qq is a monoidal category (with
monoidal structure given by composition of functors). The construction

pF P AutbnmpMpV qq, A P AlgatmpMpV qqq ÞÑ pF pAq P AlgatmpMpV qqq

determines an action of AutbnmpMpV qq on the category AlgatmpMpV qq, and the equiv-
alence µB‚ : AlgatmpMpV qq Ñ AutbnmpMpV qq of Proposition 5.6.5 is AutbnmpMpV qq-
equivariant. It follows that the action of AutbnmpMpV qq on AlgatmpMpV qq is simply
transitive.

Proposition 5.6.7. Let V be a finite-dimensional vector space over κ, let QF denote
the set of quadratic forms q : V _ Ñ K2, and let AutbnmpMpV qq be as in Proposition
5.6.5. Then the construction q ÞÑ µBClqpV _q induces an equivalence of monoidal categories
Q Ñ AutbnmpMpV qq. Here we regard the set QF as a category with only identity
morphisms, with the monoidal structure given by addition of quadratic forms.

Proof. It follows from Propositions 5.4.3 and 5.3.5 that the construction q ÞÑ µBClqpV _q
is an equivalence of categories. To show that this equivalence is monoidal, it will
suffice to show that for every pair of quadratic forms q, q1 : V _ Ñ K2, the functors
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µBClqpV _q˝µ
B
Clq1 pV _q

and µBClq`q1 pV _q
are isomorphic (as objects of AutbnmpMpV qq). Choose

an isomorphism µBClqpV _q˝µ
B
Clq1 pV _q

» µBClq2 pV _q
for some other quadratic form q2 : V _ Ñ

K2; we wish to show that q2 “ q`q1. To prove this, we invoke Example 5.6.3 to compute

Clq2pV _q » µBClq2 pV _qpCl0pV _qq

» µBClqpV _qpµ
B
Clq1 pV _qpCl0pV _qqq

» µBClqpV _qpClq1pV _qq
» Clq`q1pV _q,

so that q2 “ q ` q1 by virtue of Proposition 5.3.5.

Remark 5.6.8. We can extend Proposition 5.6.7 to describe the category of all Modgr
K˚

-
linear monoidal equivalences of MpV q with itself: it is equivalent to the semidirect
product Q¸AutκpV q, regarded as a (monoidal) category having only identity morphisms.

Proposition 5.6.9. Let V be a finite-dimensional vector space and let A be an atomic
algebra object of MpV q. Then the construction M ÞÑ AbK˚ M induces an equivalence
of categories Modgr

K˚
Ñ LModApMpV qq.

Proof. Let us regard A as a graded K˚-algebra equipped with a collection of derivations
tdvuvPV of degree p´1q (see Remark 5.2.9). Unwinding the definitions, we see that
LModApMpV qq can be identified with the category of graded A`-modules, where A`
denotes the graded K˚-algebra generated by A and

Ź˚
K˚
pV q subject to the relations

va` p´1qmav “ dvpaq for a P Am and v P V (note that we have an isomorphism A` »
AbK˚

Ź˚
K˚
pV q of graded K˚-modules). Combining the left action of A on itself with the

action of
Ź˚
K˚
pV q on A, we obtain a map of graded K˚-algebras ρ : A` Ñ EndK˚pAq.

Moreover, Proposition 5.6.9 is equivalent to the assertion that ρ is an isomorphism
(Proposition 2.1.3).

Let q : V _ Ñ π2K be the quadratic form which is identically zero and let A1 “
ClqpV _q be as in Construction 5.3.2 (so that A1 is an exterior algebra over K˚ on the
vector space V _, placed in degree 1). Then A1 is atomic (Proposition 5.3.5). Using
Remark 5.6.6, we can choose a Modgr

K˚
-linear monoidal equivalence of MpV q with itself

which carries A to A1. We may therefore replace A by A1 and thereby reduce to the
case where A “ ClqpV _q. In this case, the map ρ depends only on the vector space V .
Moreover, the construction V ÞÑ ρ carries direct sums of vector spaces to tensor products
of graded algebra homomorphisms. We may therefore reduce to proving that ρ is an
isomorphism in the special case where dimκpV q “ 1, which follows by inspection.
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5.7 The Brauer Group of MpV q

Throughout this section, we let K˚ denote a graded ring satisfying the requirements
of Notation 5.1.1 and we let κ “ K0 be the underlying field. Our goal in this section is
to describe the Brauer group of the symmetric monoidal category MpV q, where V is a
finite-dimensional vector space over κ. We begin by treating the case V “ 0:

Proposition 5.7.1. The Brauer group BrpModgr
K˚
q is isomorphic to the Brauer-Wall

group BWpκq of the field κ.

Proof. A choice of nonzero element t P K2 determines a symmetric monoidal equivalence
of categories Modgr

K˚
» Vectgr

κ (see Remark 5.1.5), hence an isomorphism of Brauer
groups BrpModgr

K˚
q » BrpVectgr

κ q “ BWpκq.

Warning 5.7.2. The isomorphism BrpModgr
K˚
q Ñ BWpκq of Proposition 5.7.1 is not

canonical: in general, it depends on the choice of nonzero element t P K2. Put another
way, the canonical isomorphism

BWpκq » BrpModgr
κrt˘1sq

determines an action of the multiplicative group κˆ on BWpκ (since κˆ acts on the
graded ring κrt˘1s by rescaling the generator t), and this action is generally nontrivial.

To extend the calculation of BrpMpV qq to the case where V is nontrivial, we will
need the following algebraic fact.

Proposition 5.7.3. Let A be an Azumaya algebra object of Modgr
K˚

and let d : Ar´1s Ñ
A be a derivation of degree p´1q. Then there exists a unique element a P A´1 such that
dx “ ax` p´1qn`1xa for all x P An.

Proof. Let M denote the direct sum A‘ Ar´1s, which we regard as a left A-module
object of Modgr

K˚
. We endow M with the structure of a right A-module via the formula

px, yqa “ pxa` ypdaq, p´1qiyaq

for a P Ai. We have an evident exact sequence

0 Ñ AÑM
u
ÝÑ Ar´1s Ñ 0

in the category ABModApModgr
K˚
qq of A-A bimodules. Let s : Ar´1s Ñ M be left

A-module map satisfying u ˝ s “ idAr´1s. Then we can write s “ ps0, idq for some left A-
module map s0 : Ar´1s Ñ A, which we can identify with an element a P A´1. In this case,
the map s is given concretely by the formula spyq “ p´ya, yq for y P Aj . Unwinding the

74



definitions, we see that s is a map of A-A bimodules if and only if a satisfies the identity
dx “ ax` p´1qn`1xa for all x P An. Consequently, Proposition 5.7.3 is equivalent to
assertion that u admits a unique section (in the category ABModApModgr

K˚
qq).

Let F : Modgr
K˚
Ñ ABModApModgr

K˚
q be the functor given by F pMq “ A bK˚ M .

Since A is an Azumaya algebra object of Modgr
K˚

, the functor F is an equivalence of
categories. We are therefore reduced to showing that the exact sequence

0 Ñ K˚ Ñ F´1M
F´1puq
ÝÝÝÝÑ K˚r´1s Ñ 0

splits uniquely in the abelian category Modgr
K˚

. The existence of the splitting is now
obvious (the category Modgr

K˚
is semisimple), and the uniqueness follows from the

observation that there are no nonzero maps from K˚r´1s to K˚.

Let V be a vector space over κ and let A be an algebra object of MpV q, which we
write as A “ pA, tdvuvPV q (see Remark 5.2.9). Using Corollary 2.2.3, we see that A is
an Azumaya algebra object of MpV q if and only if A is an Azumaya algebra object of
Modgr

K˚
.

Proposition 5.7.4. Let V be a vector space over κ and let A “ pA, tdvuvPV q be an
Azumaya algebra object of MpV q. Then:

paq For each element v P V , there exists a unique element av P A´1 such that
dvpxq “ avx` p´1qn`1xav for all x P An.

pbq The construction v ÞÑ av determines a κ-linear map V Ñ A´1.

pcq The construction v ÞÑ a2
v determines a quadratic form qA : V Ñ K´2.

Proof. Assertion paq follows from Proposition 5.7.3, and assertion pbq is immediate from
the uniqueness of av. To prove pcq, we note that the equation d2

v “ 0 guarantees that
qApvq “ a2

v belongs to the center of A. Since A is an Azumaya algebra object of Modgr
K˚

,
the even part of the center of A coincides with K˚.

Remark 5.7.5. Proposition 5.7.4 admits a converse. Suppose that A is an Azumaya
algebra object of Modgr

K˚
, and that we are given a κ-linear map ρ : V Ñ A´1 satisfying

ρpvq2 P K´2 Ď A´2 for all v P V . Then we can promote A to an Azumaya algebra
object A “ pA, tdvuvPV q of MpV q by defining dvpxq “ avx` p´1qn`1xav for x P An.

Theorem 5.7.6. Let QF denote the set of quadratic forms q : V Ñ K´2. Then the
construction rAs “ rpA, tdvuvPV qs ÞÑ prAs, qAq induces an isomorphism of abelian groups
φ : BrpMpV qq » BrpModgr

K˚
q ˆQF.
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Proof. We first show that φ is a well-defined group homomorphism. Note that the
construction rAs ÞÑ rAs determines a group homomorphism BrpMpV qq Ñ BrpModgr

K˚
q

(this a special case of Proposition 2.4.1). It will therefore suffice to show that the map
rAs ÞÑ qA determines a group homomorphism BrpMpV qq Ñ QF. The proof proceeds in
several steps:

piq Let M “ pM, tdvuvPV q be a nonzero dualizable object of MpV q. Let EndpMq
denote the endomorphism ring of M as a graded K˚-module, so that each dv
can be identified with an element of EndpMq´1. Then we can write EndpMq “
pEndpMq, tDvuvPV q, where each Dv is the derivation of EndpMq given by Dvpfq “
dv ˝ f ` p´1qn`1f ˝ dv for f P EndpMqn. The equation d2

v “ 0 then shows that
the quadratic form qEndpMq “ 0.

piiq Let A “ pA, tdvuvPV q and B “ pB, td1vuvPV q be Azumaya algebra objects of
MpV q with associated quadratic forms qA, qB : V Ñ K´2. For each v P V , let
av P A´1 be as the statement of Proposition 5.7.4, and define bv P B´1 similarly.
Unwinding the definitions, we can write A b B “ pA bK˚ B, td

2
vuvPV q, where

d2vpxq “ pav ` bvqx ` p´1qn`1xpav ` bvq for x P pA bK˚ Bqn. Since av and bv
anticommute, we obtain qAbBpvq “ pav ` bvq

2 “ a2
v ` b

2
v “ qApvq ` qBpvq.

piiiq Let A be an Azumaya algebra object of MpV q. We then compute

0 “ qEndpAq “ qAbAop “ qA ` qAop

so that qAop “ ´qA.

pivq Let A and B be Azumaya algebras in MpV q satisfying rAs “ rBs. We then have
AbB

op
» EndpMq for some nonzero dualizable object M PMpV q. We then have

0 “ qEndpMq “ qAbBop “ qA ` qBop “ qA ´ qB,

so that qA “ qB. It follows that the construction rAs ÞÑ qA determines a well-
defined map of sets BrpModgr

Λ q Ñ QF.

pvq Combining pivq and piiq, we deduce that the map rAs ÞÑ qA is a group homomor-
phism, as desired.

We now complete the proof by showing that the group homomorphism

φ : BrpMpV qq » BrpModgr
K˚
q ˆQF

is an isomorphism of abelian groups. We first show that φ is surjective. Observe
that every Azumaya algebra A P AlgpModgr

K˚
q can be lifted to an Azumaya algebra
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A “ pA, tdvuvPV q P AlgpMpV qq by setting dv “ 0 for each v P V , so that qA “ 0. To
complete the proof of surjectivity, it will suffice to show that for every quadratic form
q : V Ñ K´2, there exists an Azumaya algebra A “ pA, tdvuvPV q satisfying qA “ q.
For this, we let ClqpV q denote the Clifford algebra of q, regarded as a graded K˚-
algebra where each element of V is homogeneous of degree ´1. Let A “ EndpClqpV qq,
and define derivations tdvuvPV by the formulae pdvfqpxq “ vfpxq ` p´1qn`1fpvxq for
f P EndpClqpV qqn. Setting A “ pA, tdvuvPV q, a simple calculation gives qA “ q.

We now show that the homomorphism φ is injective. Let A “ pA, tdvuvPV q be an
Azumaya algebra object of MpV q satisfying φprAsq “ 0. Then rAs “ 0 P BrpModgr

K˚
q,

so we can write A “ EndpMq for some nonzero dualizable object M P Modgr
K˚

. Let
tav P A´1uvPV be as in Proposition 5.7.4, so that each av can be identified with a map
M r´1s ÑM . We then have a2

v “ qApvq “ 0 for v P V , so that M “ pM, tavuvPV q can
be viewed as an object of MpV q. Unwinding the definitions, we see A can be identified
with the endomorphism algebra EndpMq, so that rAs vanishes in the Brauer group
BrpMpV qq.
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Chapter 6

Milnor Modules

Let E be a Lubin-Tate spectrum. Our goal in this paper is to understand the Brauer
group BrpEq. In this section, we introduce an abelian group BMpEq which we call the
Brauer-Milnor group of E, and construct a group homomorphism BrpEq Ñ BMpEq.
Roughly speaking, the abelian group BMpEq captures the “purely algebraic” part of
the Brauer group BrpEq. More precisely, we can describe BMpEq as the Brauer group
the abelian category Syn♥

E of discrete synthetic E-modules, which we will refer to as
Milnor modules. Our main results can be summarized as follows:

paq The abelian category of Milnor modules Syn♥
E is abstractly equivalent, as a

monoidal category, to the category MpV q introduced in Definition 5.2.6; here
V “ pm{m2q_ denotes the Zariski tangent space to the Lubin-Tate ring π0E
(Theorem 6.6.6).

pbq If the residue field κ of E has characteristic ‰ 2, then there exists a canonical
equivalence Syn♥

E »MpV q which is symmetric monoidal (Proposition 6.9.1).

pcq If the field κ has characteristic ‰ 2, then by combining pbq with the calculation of
§5.7 we obtain an isomorphism

BMpEq » BWpκq ˆm2{m3

(which is not quite canonical: it depends on a choice of nonzero element t P
pπ2Eq{mpπ2Eq).

6.1 The Abelian Category Syn♥E
We begin by introducing some terminology.
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Definition 6.1.1. Let E be a Lubin-Tate spectrum and let SynE denote the 8-category
of synthetic E-modules. A Milnor module is a discrete object of SynE . We let Syn♥

E

denote the full subcategory of SynE spanned by the Milnor modules.

Remark 6.1.2. The 8-category Syn♥
E is identical to the 8-category Synď0

E defined in
§4.5.

Remark 6.1.3. Since every object of Syn♥
E is discrete, the8-category Syn♥

E is equivalent
to (the nerve of) its homotopy category hSyn♥

E . Throughout this paper, we will abuse
terminology by not distinguishing between the 8-category Syn♥

E and the ordinary
category hSyn♥

E .

Remark 6.1.4. Unwinding the definitions, we see that a Milnor module can be identified
with a functor X : phModmol

E qop Ñ Set which preserves finite products.

Remark 6.1.5. According to Remark 4.1.4, the 8-category SynE of synthetic E-
modules is a Grothendieck prestable 8-category. It follows that the category Syn♥

E of
Milnor modules is a Grothendieck abelian category. In fact, we can be more precise:
the category Syn♥

E can be identified with the abelian category of left modules over
the associative ring π0 EndEpMq, where M is any molecular E-module for which
π0M ‰ 0 ‰ π1M (see Remark 4.1.5). The main goal of this section is to obtain a
similar identification which is compatible with tensor products (see Theorem 6.6.6 and
Proposition 6.9.1).

Variant 6.1.6. Let E be a Lubin-Tate spectrum of height n, let M be an atomic
E-module. We will see that the category Syn♥

E can be identified with the abelian
category of graded modules over the graded ring π˚ EndEpMq (see Corollary 6.4.13),
which can itself be described as the exterior algebra on an n-dimensional vector space V
(Proposition 6.5.1). Here we can think of V as having a basis tQiu0ďiăn which is dual to
to a regular system of parameters tviu0ďiăn for the Lubin-Tate ring π0E. The operators
Qi P Ext˚EpM,Mq can be viewed as analogues (in the setting of Morava K-theory) of the
classical Milnor operators in the Steenrod algebra (which act on ordinary cohomology
with coefficients in Z{pZ). The terminology of Definition 6.1.1 is motivated by this
analogy.

Notation 6.1.7. Let M be an E-module. We let Sy♥rM s denote the truncation
τď0 SyrM s, More concretely, Sy♥rM s is the Milnor module given by the formula

Sy♥rM spNq “ π0 MapModE pN,Mq.

We regard the construction M ÞÑ Sy♥rM s as a functor from the 8-category ModE of
E-modules to the category Syn♥

E of Milnor modules.
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Proposition 6.1.8. The category Syn♥
E of Milnor modules admits an essentially unique

symmetric monoidal structure for which the truncation functor

τď0 : SynE Ñ Syn♥
E

is symmetric monoidal (where we regard SynE as equipped with the symmetric monoidal
structure constructed in §4.4.

Proof. This is a special case of Definition HA.2.2.1.6 (note that the truncation functor
τď0 is compatible with the symmetric monoidal structure on SynE).

Notation 6.1.9. For the remainder of this paper, we will regard the category Syn♥
E as

equipped with the symmetric monoidal structure of Proposition 6.1.8. We will denote
the tensor product functor on Syn♥

E by

b : Syn♥
E ˆ Syn♥

E Ñ Syn♥
E

and we will denote the unit object of Syn♥
E by 1♥. Concretely, the functor b is given

by the formula M bN “ τď0pM ^Nq.
Note that the symmetric monoidal structure on the truncation functor τď0 determines

canonical isomorphisms

τď0pX ^ Y q » pτď0Xqb pτď0Y q

for synthetic E-modules X and Y , and an isomorphism 1♥ » τď01 “ Sy♥rEs.

Remark 6.1.10. It follows from Variant 4.4.11 that we can regard the functor Sy♥ :
ModE Ñ Syn♥

E as a symmetric monoidal functor. Similarly, the restriction of Sy♥ to
the full subcategory Modloc

E is also symmetric monoidal.

Definition 6.1.11. Let E be a Lubin-Tate spectrum. We let BMpEq denote the Brauer
group of the symmetric monoidal category Syn♥

E of Milnor modules. We will refer to
BMpEq as the Brauer-Milnor group of E.

6.2 Atomic and Molecular Milnor Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.

Definition 6.2.1. Let X be a Milnor module. We will say that X is

• atomic if it is isomorphic to Sy♥rM s, where M P ModE is atomic.

• molecular if it is isomorphic to Sy♥rM s, where M P ModE is molecular.
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• quasi-molecular if it is isomorphic to Sy♥rM s, where M P ModE is quasi-molecular.

Remark 6.2.2. Let M be an atomic E-module (so that M is uniquely determined
up to equivalence). Using the fact that the construction N ÞÑ Sy♥rN s commutes with
coproducts (Proposition 4.2.3), we conclude:

• A Milnor module X is atomic if and only if it is isomorphic to Sy♥rM s.

• A Milnor module X is molecular and only if it is isomorphic to a direct sum of
finitely many objects of the form Sy♥rM s and Sy♥rΣM s.

• A Milnor module X is quasi-molecular and only if it is isomorphic to a direct sum
of objects of the form Sy♥rM s and Sy♥rΣM s.

Remark 6.2.3. A Milnor module X is quasi-molecular if and only if it projective as
an object of the abelian category Mod♥

E . Moreover, the abelian category Mod♥
E has

enough projective objects: that is, every Milnor module X fits into an exact sequence
0 Ñ X 1 Ñ P Ñ X Ñ 0 where P is quasi-molecular.

Remark 6.2.4. Let X be a molecular Milnor module. Then X is a dualizable object
of Syn♥

E , and the dual X_ is also molecular (see Remark 3.6.15).

Using Propositions 4.5.7 and 4.5.8, we obtain the following:

Proposition 6.2.5. Let tMiuiPI be a finite collection of E-modules and let N P ModE.
If either N or some Mi is quasi-molecular, then the canonical map

π0 MapModE p
â

iPI

Mi, Nq Ñ HomSyn♥
E
pbiPI Sy♥rMis, Sy♥rN sq

is a bijection.

Corollary 6.2.6. Let M be an object of Modloc
E . Then M is quasi-molecular (in the

sense of Variant 3.6.12) if and only if the Milnor module Sy♥rM s is quasi-molecular
(in the sense of Definition 6.2.1).

Proof. It follows immediately from the definition that if M is quasi-molecular, then
Sy♥rM s is quasi-molecular. For the converse, suppose that Sy♥rM s is quasi-molecular.
Then there exists a quasi-molecular E-module N and an isomorphism of Milnor modules
α : Sy♥rM s » Sy♥rN s. Applying Proposition 6.2.5, we can assume that α is obtained
from a morphism of E-modules α : M Ñ N . We will complete the proof by showing
that α is an equivalence. By virtue of Proposition 4.2.5, it will suffice to show that α
induces an equivalence of synthetic E-modules SyrM s Ñ SyN . Let n ě 0 be an integer;
we will show that α induces an isomorphism of Milnor modules πn SyrM s Ñ πn SyrN s.
When n “ 0, this follows from our assumption that α is an isomorphism. The general
case follows by induction on n, since the synthetic E-modules SyrM s and SyrN s both
satisfy condition p˚q of Proposition 4.2.5.
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Corollary 6.2.7. Let M be an object of Modloc
E . Then M is molecular (atomic) if and

only if the Milnor module Sy♥rM s is molecular (atomic).

Corollary 6.2.8. Let O be an 8-operad, let Algqmol
O phModEq denote the full subcategory

of AlgphModEq spanned by those O-algebras A such that ApXq P hModE is quasi-
molecular for each X P O, and define Algqmol

O pSyn♥
Eq Ď AlgOpSyn♥

Eq similarly. Then
the construction A ÞÑ Sy♥rAs induces an equivalence of categories Algqmol

O phModEq Ñ

Algqmol
O pSyn♥

E q.

Example 6.2.9. Applying Corollary 6.2.8 in the case whereO is the trivial8-operad, we
conclude that the construction M ÞÑ Sy♥rM s induces an equivalence from the homotopy
category of quasi-molecular E-modules to the full subcategory of Syn♥

E spanned by
the quasi-molecular objects (this also follows directly from either Proposition 4.5.7 or
Proposition 4.5.8).

Example 6.2.10. Applying Corollary 6.2.8 in the case where O is the associative
8-operad, we obtain an equivalence between the following:

• The category of quasi-molecular associative algebras in the homotopy category
hModE.

• The category of quasi-molecular associative algebras in the category Syn♥
E

Note that we have a similar equivalences for the categories of atomic and molecular
associative algebras.

Example 6.2.11. Applying Corollary 6.2.8 in the case where O is the commutative
8-operad, we obtain an equivalence between the following:

• The category of quasi-molecular commutative algebras in the homotopy category
hModE.

• The category of quasi-molecular commutative algebras in the category Syn♥
E

Note that we have a similar equivalences for the categories of atomic and molecular
commutative algebras (beware that if the

6.3 Constant Milnor Modules

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Let E˚ denote the graded commutative ring π˚E, let m Ď E0 “ π0E be the maximal
ideal, and let K˚ denote the graded commutative ring E˚{mE˚. Note that K˚ satisfies
the hypotheses of Notation 5.1.1 (that is, K˚ is noncanonically isomorphic to a ring of
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Laurent polynomials κrt˘1s, where κ “ K0 is the residue field of E and t is homogeneous
of degree 2).

We let Modgr
E˚

denote the abelian category of graded E˚-modules, and we let Modgr
K˚

denote the abelian category of graded K˚-modules. We regard Modgr
E˚

and Modgr
K˚

as
symmetric monoidal categories by means of the usual Koszul sign rule, so that the
construction M ÞÑ π˚M determines a lax symmetric monoidal functor ModE Ñ Modgr

E˚
.

Definition 6.3.1. Let M˚ be a graded module over the graded ring E˚. We will say
that M˚ is free if there exists a collection of homogeneous elements txα PM˚u which
freely generate M˚ as a module over E˚. We let Modfr

E˚ denote the full subcategory of
Modgr

E˚
spanned by the free graded E-modules.

Remark 6.3.2. In the setting of Definition 6.3.1, we could replace the graded ring
E˚ with the graded ring K˚. However, the resulting notion would be vacuous: since
every nonzero homogeneous element of K˚ is invertible, every graded K˚-module is
automatically free.

Remark 6.3.3. Let m Ď E0 “ π0E denote the maximal ideal. Then the construction
M˚ ÞÑ M˚{mM˚ determines a symmetric monoidal functor Modgr

E˚
Ñ Modgr

K˚
. We

make the following observations:

paq Every object of Modgr
K˚

can be written as a quotient M˚{mM˚, where M˚ P Modgr
E˚

is free.

pbq If M˚ and N˚ are graded E˚-modules for which M˚ is free, then the canonical
map

HomModgr
E˚
pM˚, N˚q Ñ HomModgr

K˚
pM˚{mM˚, N˚{mN˚q

is a surjection whose kernel can be identified with HomModgr
E˚
pM˚,mN˚q.

Combining paq and pbq, we obtain an equivalence Modgr
K˚
» C, where the category C can

be described as follows:

• The objects of C are free graded E˚-modules.

• If M˚ and N˚ are free graded E˚-modules, then the set HomCpM˚, N˚q is the
cokernel of the inclusion map HomModgr

E˚
pM˚,mN˚q ãÑ HomModgr

E˚
pM˚, N˚q.

Definition 6.3.4. Let M be an E-module. We will say that M is free if π˚M is free
when regarded as a graded E˚-module, in the sense of Definition 6.3.1. We let Modfr

E

denote the full subcategory of ModE spanned by the free E-modules.

Remark 6.3.5. An E-module M is free if and only if it can be written as a coproduct
of E-modules of the form E and ΣE.
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Remark 6.3.6. Let M and N be E-modules. If M is free, then the canonical map
π0 MapModE pM,Nq Ñ HomModgr

E˚
pπ˚M,π˚Nq is bijective. Consequently, the construc-

tion M ÞÑ π˚M induces an equivalence of categories hModfr
E » Modfr

E˚ . Moreover, this
equivalence is symmetric monoidal.

Definition 6.3.7. Let X be a Milnor module. We will say that X is constant if
it is isomorphic to Sy♥rM s, where M P ModE is free. We let SyncE denote the full
subcategory of Syn♥

E spanned by the constant Milnor modules.

Remark 6.3.8. Since the construction M ÞÑ Sy♥rM s commutes with coproducts, an
object X P Syn♥

E is constant if and only if it is isomorphic to a coproduct of objects of
the form 1♥ “ Sy♥rEs and Sy♥rΣEs.

Remark 6.3.9. Since the collection of free objects of ModE is closed under tensor
products and the functor M ÞÑ Sy♥

E is symmetric monoidal, the full subcategory
SyncE Ď Syn♥

E is closed under the tensor product functor b : Syn♥
E ˆ Syn♥

E Ñ Syn♥
E .

The following result describes the structure of the category SyncE :

Proposition 6.3.10. Let M and N be free E-modules. Then the canonical map

ρ : π0 MapModE pM,Nq Ñ HomSyncE pSy♥rM s, Sy♥rN sq

is surjective, and its kernel is the image of the canonical map

HomModgr
E˚
pπ˚M,mπ˚Nq ãÑ HomModgr

E˚
pπ˚M,π˚Nq » π0 MapModE pM,Nq.

Combining Proposition 6.3.10 with Remark 6.3.3, we obtain the following:

Corollary 6.3.11. There is an essentially unique equivalence of symmetric monoidal
categories Φ : SyncE » Modgr

K˚
for which the diagram

Modfr
E

Sy♥

��

π˚ //Modfr
E˚

��
SyncE

Φ //Modfr
K˚

commutes up to equivalence.

Proof of Proposition 6.3.10. Without loss of generality, we may assume that M » E.
Let us identify the domain of ρ with π0N . We wish to show that ρ is a surjection with
kernel kerpρq “ mpπ0Nq. We first show that the kernel of ρ contains mpπ0Nq. Choose
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an element x P m and an element y P π0N ; we wish to show that ρpxyq “ 0. In other
words, we wish to show that the composite map

Sy♥rEs
x
ÝÑ Sy♥rEs

y
ÝÑ Sy♥rN s

vanishes in the abelian category Syn♥
E . In fact, we claim that x induces the zero map

from Sy♥rEs to itself. For this, it suffices to show that for every molecular E-module M ,
multiplication by x annihilates the abelian group π0 MapModE pM,Eq » π0M

_, which
follows from the fact that M_ is also molecular (Remark 3.6.15).

We now establish the reverse inclusion kerpρq Ď mpπ0Nq. Suppose we are given
an element y P π0N » π0 MapModE pE,Nq with the property that the induced map
Sy♥rEs Ñ Sy♥rN s vanishes. Let K be an atomic E-module and let K_ denote its E-
linear dual, so that the induced map Sy♥rEspK_q

y
ÝÑ Sy♥rEspK_q vanishes. Unwinding

the definitions (and using our assumption that N is free), we deduce that the composite
map

π0pK bE Eq
y
ÝÑ π0pK bE Nq » pπ0Nq{mpπ0Nq

vanishes, so that y P mpπ0Nq as desired.
We now show that ρ is surjective. Let α : Sy♥rEs Ñ Sy♥rN s be a natural transfor-

mation. Evaluating α on K_, we obtain a map

αK_ : κ “ Sy♥rEspK_q Ñ Sy♥rN spK_q » pπ0Nq{mpπ0Nq,

which carries the unit element 1 P κ to some element y P pπ0Nq{mpπ0Nq. We will
complete the proof by showing that α “ ρpyq. To prove this, we can replace α by
α´ ρpyq and thereby assume that αK_p1q “ 0. We will complete the proof by showing
that α “ 0: that is, the induced map αP : Sy♥rEspP q Ñ Sy♥rN spP q is vanishes for
every molecular E-module P . Choose an element z P 1♥pP q, which we can identify with
an element of π0P

_. Since P is molecular, we can choose a map f : K Ñ P_ which
carries the unit element of π0K to z. In this case, the vanishing of αP pzq follows from
the commutativity of the diagram

Sy♥rEspK_q

Sy♥rEspf_q
��

αK_ //

��

Sy♥rN spK_q

Sy♥rNspf_q
��

Sy♥rEspP q
αP // Sy♥rN spP q.
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6.4 The Structure of Syn♥E
Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.

Let E˚ denote the graded commutative ring π˚E, let m Ď E0 “ π0E be the maximal
ideal, and let K˚ denote the graded commutative ring E˚{mE˚.

Construction 6.4.1 (Enrichment in Graded K˚-Modules). Let Φ : Modgr
K˚
» SyncE Ď

Syn♥
E be the symmetric monoidal functor of Corollary 6.3.11. If X and Y are Milnor

modules, we let HompX,Y q˚ denote a graded K˚-module with the following universal
property: for every graded K˚-module M˚, we have a canonical bijection

HomModgr
K˚
pM˚,HompX,Y q˚q » HomSyn♥

E
pΦpM˚qbX,Y q.

Note that the construction pX,Y q ÞÑ HompX,Y q˚ determines an enrichment of the
category of Milnor modules Syn♥

E over the symmetric monoidal category Modgr
K˚

.

Remark 6.4.2. Let X be a Milnor module. For every integer n, we let Xrns denote
the Milnor module given by the tensor product X b Sy♥rΣnEs. We will refer to Xrns
as the n-fold shift of X. Note that if Y is another Milnor module, then the graded
K˚-module HompX,Y q˚ can be described concretely by the formula HompX,Y qn “
HomSyn♥

E
pXrns, Y q.

Warning 6.4.3. If X P Syn♥
E » SynE is a Milnor module, then the n-fold shift Xrns

should not be confused with the n-fold suspension ΣnX (which we can regard as a
non-discrete synthetic E-module).

Proposition 6.4.4. Let M and N be E-modules. If M or N is quasi-molecular, then
the canonical map

ρ : π˚Map
E
pM,Nq Ñ HompSy♥rM s,Sy♥rN sq˚

is an isomorphism of graded E˚-modules.

Proof. Replacing M by a suitable suspension, we can reduce to proving that the
canonical map

π0Map
E
pM,Nq Ñ HompSy♥rM s, Sy♥rN sq0

is bijective, which follows from either Proposition 4.5.7 (if M is quasi-molecular) or
Proposition 4.5.8 (if N is quasi-molecular).

Warning 6.4.5. Proposition 6.4.4 does not necessarily hold without the assumption
that either M or N quasi-molecular: note that the codomain of ρ is a graded K˚-module,
but the domain of ρ need not be annihilated by the maximal ideal m Ď π0E.
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Notation 6.4.6. Let X be a Milnor module. We let EndpXq˚ denote the mapping
object HompX,Xq˚ of Construction 6.4.1. Then EndpXq˚ is an associative algebra
object of the category Modgr

K˚
: that is, it is a graded algebra over K˚.

Example 6.4.7. Let M be an E-module, and let EndEpMq P AlgpModEq denote the
associative E-algebra classifying endomorphisms of M . Then we have a canonical map
of graded E˚-algebras π˚ EndEpMq Ñ EndpSy♥rM sq˚, which is an isomorphism if M is
quasi-molecular (Proposition 6.4.4).

We now elaborate on the characterization of Milnor modules given in Variant 6.1.6.

Construction 6.4.8. Let A be a Milnor module. We let ΓA : Syn♥
E Ñ Modgr

K˚
denote

the functor given by ΓApXq “ Homp1♥, AbXq˚.

Remark 6.4.9. Construction 6.4.8 makes sense if A is any Milnor module. However,
we will primarily be interested in the case where A is an associative algebra object of
Syn♥

E (as suggested by our notation).

Remark 6.4.10. Let A be a dualizable object of Syn♥
E , with dual A_. Then the functor

ΓA : Syn♥
E Ñ Modgr

K˚
is given by the formula ΓApXq “ HompA_, Xq˚. It follows that

the functor ΓA admits a left adjoint F , given concretely by the formula F pV q “ A_bV
(here we abuse notation by identifying Modgr

K˚
with the full subcategory SyncE Ď Syn♥

E

by means of Corollary 6.3.11).

Example 6.4.11. Let M be a molecular E-module and set A “ Sy♥rM s. Then the
functor ΓA is given concretely by the formula

ΓApXqn “ HompA_, Xqn “ Map0pSy♥rΣnM_s, Xq “ XpΣnM_q.

Proposition 6.4.12. Let A be a nonzero molecular object of Syn♥
E. Then the functor

ΓA induces an equivalence from the category of Milnor modules to the category of graded
left modules over EndpAq˚ (see Notation 6.4.6).

Proof of Proposition 6.4.12. Let C “ LModEndpAq˚pModgr
K˚
q denote the abelian category

of graded left modules over EndpAq˚, so we can promote ΓA to a functor G : Syn♥
E Ñ C.

Since A is nonzero and molecular, we can write A “ Sy♥rM s, where M is a nonzero
molecular E-module. Using Example 6.4.11, we see that the functor G can be described
concretely by the formula GpXqn “ XpΣnM_q. From this, we deduce the following:

piq The functor G commutes with small colimits.

piiq The functor G is conservative (since every molecular E-module is a retract of a
direct sum of modules of the form ΣnM_).
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The functor G admits a left adjoint F : C Ñ Syn♥
E , which we can describe concretely

by the formula F pN˚q “ AbEndpAq˚ N˚ (here we abuse notation by identifying graded
K˚-modules with their image under the equivalence Φ : Modgr

K˚
» SyncE of Corollary

6.3.11). To complete the proof, it will suffice to show that F is fully faithful: that is,
that the unit map u : N˚ Ñ pG ˝ F qpN˚q is an isomorphism for every object N˚ P C.
Since the functors F and G both preserve small colimits, the collection of those objects
N˚ P C for which u is an isomorphism is closed under small colimits. We may therefore
assume without loss of generality that M˚ is a free left EndpAq˚-module on a single
homogeneous generator. In this case, the desired result follows immediately from the
definitions.

Combining Proposition 6.4.12 with Example 6.4.7, we obtain the following:

Corollary 6.4.13. Let M be a nonzero molecular E-module. Then the construction
X ÞÑ tXpΣnM_qunPZ determines an equivalence from the category of Milnor modules
to the category of graded left modules over π˚ EndEpMq.

6.5 Endomorphisms of Atomic E-Modules

Throughout this section, we fix a Lubin-Tate spectrum E. Let m denote the maximal
ideal of π0E, let K˚ denote the graded ring pπ˚Eq{mpπ˚Eq, and let κ “ pπ0Eq{m denote
the residue field of E. Suppose we are given an atomic E-module M . It follows from
Corollary 6.4.13 that the category of Milnor modules Syn♥

E can be identified with the
category of modules over the graded ring π˚ EndEpMq. Our goal in this section is to
describe π˚ EndEpMq more explicitly.

Proposition 6.5.1. Let E be a Lubin-Tate spectrum of height n and let M be an
atomic E-module. Then there exists an n-dimensional vector space V over κ and an
isomorphism of graded K˚-algebras γ :

Ź˚
K˚
pV q » π˚ EndEpKq (see Notation 5.2.1).

Proof. Let v0, v1, . . . , vn´1 be a system of parameters for the regular local ring π0E. For
0 ď m ă n, let Pm denote the cofiber of the map vi : E Ñ E (formed in the 8-category
ModE), so that we have a canonical fiber sequence

E
fm
ÝÝÑ Pm

gm
ÝÝÑ ΣE.

Since each vm is a regular element of π˚E, we have canonical isomorphisms π˚Pm »
pπ˚Eq{vmpπ˚Eq. In particular, the graded π˚E-module π˚Pm is concentrated in even
degrees and annihilated by vm.

Let B“mE denote the graded ring π˚ EndEpPmq. Using the fiber sequence

EndEpPmq Ñ Pm
vi
ÝÑ Pm
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together with our calculation of π˚Pm, we conclude that B“mE is isomorphic to a free
pπ˚Eq{vmpπ˚Eq-module on generators 1 “ idPm and βm, where βm P π´1 EndEpPmq is
given by the composition

Σ´1Pm
Σ´1pgmq
ÝÝÝÝÝÑ E

fm
ÝÝÑ Pm.

From this description, we immediately deduce that β2
m “ 0.

For 0 ď m ď n, set Qm “ P0 bE ¨ ¨ ¨ bE Pm´1, and set BďmE “ π˚ EndEpQmq. For
k ď m, we abuse notation by identifying the element βk P pB“kE q´1 with its image in
pBďmE q´1. We will establish the following claim for each 0 ď m ď n:

p˚mq The graded ring BďmE is isomorphic to an exterior algebra over the commutative
ring pπ˚Eq{pv0, . . . , vm´1q on generators β0, . . . , βm´1.

Note that the statement of Proposition 6.5.1 follows immediately from assertion p˚nq
(since Qn is atomic and therefore equivalent to M). We will prove p˚mq by induction on
m, the case m “ 0 being trivial. To carry out the inductive step, let us suppose that
m ą 0 and that assertion p˚m´1q holds. There is a canonical equivalence of E-modules
EndEpQm´1q bE EndEpPmq » EndEpQmq, which yields a convergent spectral sequence
Torπ˚E˚ pBďm´1

E , B“mE q ñ BďmE . Since the elements v0, . . . , vm´1 form a regular sequence
in π˚E, our inductive hypothesis guarantees that the groups Torπ˚Es pBďm´1

E , B“mE q van-
ish for s ą 0. Consequently, the spectral sequence degenerates to yield an isomorphism
of graded rings BďmE » Bďm´1

E bπ˚E B
“m
E , from which p˚mq follows immediately.

Corollary 6.5.2. Let E be a Lubin-Tate spectrum of height n. Then the group

Ext1
Syn♥

E

p1♥,1♥r´1sq

is an n-dimensional vector space over the residue field κ of E.

Proof. Combine Proposition 6.5.1, Corollary 6.4.13, and Proposition 5.5.6.

Our next goal is to obtain a more intrinsic description of the vector space

Ext1
Syn♥

E

p1♥,1♥r´1sq

and, by extension, the vector space V appearing in Proposition 6.5.1).

Proposition 6.5.3. Let x be an element of the maximal ideal m and let Mx denote
the fiber of the map x : E Ñ E, so that we have a fiber sequence of E-modules
Σ´1E ÑMx Ñ E. Then the induced sequence

0 Ñ Sy♥rΣ´1Es Ñ Sy♥rMxs Ñ Sy♥rEs Ñ 0

is exact (in the abelian category of Milnor modules).
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Proof. Let N be a molecular E-module; we wish to show that the sequence of abelian
groups

0 Ñ π0 MapModE pN,Σ
´1Eq Ñ π0 MapModE pN,Mxq Ñ π0 MapModE pN,Eq Ñ 0

is exact. Equivalently, we wish to show that the boundary maps

π0 MapModE pN,Σ
´1Eq

x
ÝÑ π0 MapModE pN,Σ

´1Eq

π0 MapModE pN,Eq
x
ÝÑ π0 MapModE pN,Eq

both vanish. To see this, we note that N_ is also a molecular E-module (Remark 3.6.15),
so the homotopy groups of N_ are annihilated by the maximal ideal m Ď π0E.

Theorem 6.5.4. There exists a unique vector space isomorphism

ψ : m{m2 Ñ Ext1
Syn♥

E

p1♥,1♥r´1sq

with the following property: for every element x P m having image x P m{m2, ψpxq is the
extension class of the exact sequence 0 Ñ 1♥r´1s Ñ Sy♥rMxs Ñ 1♥ Ñ 0 of Proposition
6.5.3.

Proof. It is not difficult to show that the construction x ÞÑMx induces a pπ0Eq-linear
map

ψ : mÑ Ext1
Syn♥

E

p1♥,1♥r´1sq.

Since the codomain of ψ is annihilated by the maximal ideal m Ď π0E, we see that ψ
descends to a map of vector spaces

ψ : m{m2 Ñ Ext1
Syn♥

E

p1♥,1♥r´1sq.

It follows from Corollary 6.5.2 that the domain and codomain of ψ are vector spaces of
the same (finite) dimension over κ. Consequently, to show that ψ is an isomorphism, it
will suffice to show that ψ is injective.

Choose an element x P m, and suppose that the exact sequence 0 Ñ 1♥r´1s Ñ
Sy♥rMxs Ñ 1♥ Ñ 0 splits (in the abelian category Syn♥

E); we wish to show that x
belongs to m2. Suppose otherwise. Then we can choose a regular system of parameters
v0, . . . , vn´1 for the local ring π0E which contains x. The proof of Proposition 6.5.1
then shows that there exists an atomic E-module M which factors as a tensor product
Mx bE N , for some auxiliary E-module N . We then obtain

Sy♥rM s » Sy♥rMxsb Sy♥rN s

» Sy♥rN s ‘ Sy♥rN sr1s.

It follows that the endomorphism ring π˚ EndEpMq » EndpSy♥Mq˚ contains an invert-
ible element of degree 1, contradicting Proposition 6.5.1.
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6.6 The Monoidal Structure of Syn♥E
Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.

Our next goal is to promote the equivalence of Proposition 6.4.12 to an equivalence of
monoidal categories.

Remark 6.6.1. Let A be an associative algebra object of Syn♥
E and let ΓA : Syn♥

E Ñ

Modgr
K˚

be as in Construction 6.4.8. Then ΓA can be written as a composition

Syn♥
E

Ab
ÝÝÑ Syn♥

E
Γ
ÝÑ Modgr

K˚

where the first functor is lax monoidal (since A is an associative algebra object of
Syn♥

E) and Γ is right adjoint to the inclusion SyncE Ď Syn♥
E (and therefore inherits the

structure of a lax symmetric monoidal functor). It follows that we can regard ΓA as a
lax monoidal functor from Syn♥

E to Modgr
K˚

.

Remark 6.6.2. In the situation of Remark 6.6.1, suppose that A is a commutative
algebra object of the category Syn♥

E . Then we can regard ΓA˚ as a lax symmetric
monoidal functor from Syn♥

E to Modgr
K˚

.

Our goal is to prove the following analogue of Proposition 5.4.3:

Proposition 6.6.3. Let A be an associative algebra object of Syn♥
E. If A is atomic,

then the lax monoidal functor ΓA : Syn♥
E Ñ Modgr

K˚
is monoidal.

The proof of Proposition 6.6.3 will make use of the following:

Lemma 6.6.4. Let A P AlgphModEq be atomic, and let M and N be E-modules. If M
is perfect, then the multiplication on A induces an isomorphism

θM,N : π˚Map
E
pM,Aq bπ˚A π˚Map

E
pN,Aq Ñ π˚Map

E
pM bE N,Aq

of graded modules over π˚A.

Proof. Let us regard N P ModE as fixed. The collection of those E-module spectra M
for which θM,N is an isomorphism is closed under retracts and extensions. Consequently,
to show that θM,N is an equivalence for all perfect E-modules M , it will suffice to show
that the map θE,N is an equivalence. Unwinding the definitions, we see that θE,N can
be identified with the endomorphism of Map

E
pN,Aq given by postcomposition with the

composite map
A » E bE A

ebid
ÝÝÝÑ AbE A

m
ÝÑ A

, where e : E Ñ A is the unit map. Since the multiplication on A is unital, we conclude
that θE,N is an isomorphism.
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Proof of Proposition 6.6.3. Let A P AlgpSyn♥
Eq be atomic. We first show that the

functor ΓA preserves unit objects: that is, the canonical map K˚ Ñ Homp1♥, Aq˚ is
an isomorphism. Using Example 6.2.10, we can choose an isomorphism A » Sy♥rAs,
where A is an atomic algebra object of the homotopy category hModE. In this case, the
desired result follows from Proposition 6.2.5.

We now complete the proof by showing that, for every pair of objects X,Y P Syn♥
E ,

the canonical map θX,Y : ΓApXqbK˚ ΓApY q Ñ ΓApXbY q is an isomorphism. Note that
for fixed Y P Syn♥

E , the collection of those objects X for which θX,Y is an isomorphism
is closed under small colimits. We may therefore assume without loss of generality that
X “ Syn♥rM_s, where M is a molecular E-module. Similarly, we may assume that
Y “ Sy♥rN s, where N P ModE is molecular. In this case, the desired conclusion is a
special case of Lemma 6.6.4.

Our next goal is to apply Proposition 6.6.3 to construct an equivalence of monoidal
categories Syn♥

E »MpV q, where V “ pm{m2q_ denotes the Zariski tangent space of the
Lubin-Tate ring and MpV q is the category of graded modules over the exterior algebra
Ź˚
K˚
pV q (as in Definition 5.2.6). It will be useful to formulate a more precise statement.

Definition 6.6.5. Let F : Syn♥
E ÑMpV q be an equivalence of Modgr

K˚
-linear monoidal

categories. Then F induces a κ-linear isomorphism

DF : m{m2 ψ
ÝÑ Ext1

Syn♥
E

p1♥r1s,1♥q
F
ÝÑ Ext1

MpV qpK˚r1s,K˚q
γ´1
ÝÝÑ m{m2,

where ψ is the isomorphism of Theorem 6.5.4 and γ is the isomorphism of Proposition
5.5.6. We will say that F is normalized if DF is the identity map idm{m2 .

Our main result can now be stated as follows:

Theorem 6.6.6. There exists a normalized Modgr
K˚

-linear monoidal equivalence of
categories F : Syn♥

E ÑMpV q.

Corollary 6.6.7. The tensor product functor b : Syn♥
E ˆ Syn♥

E Ñ Syn♥
E is exact in

each variable.

Corollary 6.6.8. The fully faithful embedding Modgr
K˚

» SyncE ãÑ Syn♥
E induces an

isomorphism on Picard groups. In other words, every invertible Milnor module is
isomorphic either to the unit object 1♥ or to its shift 1♥r1s.

Proof. By virtue of Theorem 6.6.6, it suffices to observe that any invertible object M
of the symmetric monoidal category MpV q is isomorphic either to K˚ or to the shift
K˚r1s.
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Remark 6.6.9. Let F : Syn♥
E ÑMpV q be as in Theorem 6.6.6, let M be a Milnor

module, and regard F pMq as a graded module over the exterior algebra
Ź˚
K˚
pV q. Then:

paq The Milnor module M is quasi-molecular if and only if F pMq is a free module
over

Ź˚
K˚
pV q on homogeneous generators.

pbq The Milnor module M is molecular if and only if F pMq is a free module over
Ź˚
K˚
pV q on finitely many homogeneous generators.

pcq The Milnor module M is constant (in the sense of Definition 6.3.7) if and only if
V acts trivially on F pMq.

Corollary 6.6.10. Let M and N be nonzero Milnor modules. If M b N is constant,
then M and N are constant.

Corollary 6.6.11. Let M be a quasi-molecular Milnor module. Then M is an injective
object of the abelian category Syn♥

E.

Corollary 6.6.12. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization.
If the Thom spectrum ThQ is an atomic E-algebra, then the polarization Q is atomic
(in the sense of Definition 3.4.2).

Proof. It follows from Proposition 3.3.2 that Q is nonsingular, and therefore induces a
map

cQ1 : κb Λ Ñ m{m2

(see Construction 3.4.1). We wish to show that cQ1 is an isomorphism. Choose a
basis λ1, . . . , λm for the lattice Λ. Let AQ denote the Milnor module Sy♥rThQs, and
define AQrλis for 1 ď i ď m similarly. Using Remarks 3.3.4 and 6.1.10, we obtain an
isomorphism of Milnor modules

AQ » AQrλ1s b ¨ ¨ ¨bAQrλms

(beware that this isomorphism does not necessarily respect the algebra structures on
both sides).

Write cQ1 pλiq “ 1` xi for xi P m. Using Proposition 6.5.3, we see that each of the
cofiber sequences E xi

ÝÑ E
Th
ÝÝÑQrλis determines a short exact sequence of Milnor modules

0 Ñ 1♥ Ñ AQrλis Ñ 1♥r1s Ñ 0,

classified by an element of Ext1
Syn♥

E

p1♥r1s,1♥q, which corresponds to the element cQ1 pλiq
under the isomorphism ψ : m{m2 » Ext1

Syn♥
E

p1♥,1♥r´1sq of Theorem 6.5.4.
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Set V “ pm{m2q_ and let F : Syn♥
E be a normalized Modgr

K˚
-linear equivalence of

monoidal categories (which exists by virtue of Theorem 6.6.6). The condition that F is
normalized guarantees that each F pAQrλisq can be identified with the extension of K˚r1s
by K˚ classified by xi “ c1

Qpλiq: that is, with the shifted exterior algebra Λ˚K˚pκqr1s,
regarded as an object of MpV q by means of the homomorphism

ľ˚

K˚
pV q Ñ

ľ˚

K˚
pκq

induced by the linear map V Ñ κ given by evaluation at xi. It follows that

F pAQq » F pAQrλ1sq bK˚ ¨ ¨ ¨ bK˚ F pAQrλmsq

can be identified with the shifted exterior algebra
Ź˚
K˚
pκ b Λ_qrms, regarded as an

object of MpV q by means of the homomorphism
Ź˚
K˚
pV q Ñ

Ź˚
K˚
pκ b Λ_q given by

the κ-linear dual of cQ1 . Note that if ThQ is an atomic E-algebra, then F pAQq is an
atomic object ofMpV q (see Remark 6.6.9), so that cQ1 is an isomorphism as desired.

The proof of Theorem 6.6.6 will require some preliminaries.

Construction 6.6.13 (The Bialgebra Structure on End˚pAq). Let A be an atomic
algebra object of Syn♥

E , let ΓA : Syn♥
E Ñ Modgr

K˚
be as in Construction 6.4.8, and let F :

Modgr
K˚
Ñ Syn♥

E be a left adjoint to ΓA (given concretely by the formula F pV q “ A_bV ;
see Remark 6.4.10). Then the composition ΓA ˝ F : Modgr

K˚
Ñ Modgr

K˚
is a monad T

on the category Modgr
K˚

, given concretely by the formula T pV q “ End˚pAq bK˚ V (see
Proposition 6.4.12).

Since the functor ΓA is monoidal, the functor F inherits a colax monoidal structure
for which the unit and counit maps

idModgr
K˚
Ñ ΓA ˝ F F ˝ ΓA Ñ idSyn♥

E

are natural transformations of colax monoidal functors. In particular, the functor
T “ ΓA ˝ F inherits a colax monoidal structure for which the unit and multiplication
maps

id Ñ T T ˝ T Ñ T

are colax monoidal natural transformations. It follows that the endomorphism algebra
End˚pAq “ T pK˚q can be regarded as an associative coalgebra object of Modgr

K˚
, for

which the unit and multiplication maps

K˚ Ñ End˚pAq End˚pAq bK˚ End˚pAq Ñ End˚pAq

are morphisms of coalgebras: that is, End˚pAq has the structure of an (associative and
coassociative) bialgebra object of the category Modgr

K˚
.
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Remark 6.6.14. In the situation of Construction 6.6.13, the coalgebra structure on
End˚pAq can be described more explicitly as follows. Set V “ HompA b A,Aq˚, so
that V inherits a left action of the graded ring End˚pAq (via postcomposition with
endomorphisms of A) and a commuting right action of the tensor product pEnd˚pAqbK˚
End˚pAqq (via precomposition with endomorphisms of each factor of A). It follows
from Proposition 6.6.3 that V is freely generated as an pEnd˚pAq b End˚pAqq-module
by the multiplication map m : A b A Ñ A (which we can regard as an element of
V0). Consequently, the left action of End˚pAq on V is classified by a homomorphism of
graded K˚-algebras ∆ : End˚pAq Ñ End˚pAq b End˚pAq. More concretely, an equation
∆pfq “

ř

f 1i b f
2
i in the graded vector space End˚pAqbK˚ End˚pAq is equivalent to the

equation f ˝m “
ř

m ˝ pf 1i b f2i q in the graded vector space HompAbA,Aq˚.

Remark 6.6.15. Let A be an atomic algebra object of Syn♥
E , and regard End˚pAq as

a graded bialgebra over K˚ (see Construction 6.6.13). If V˚ and W˚ are graded left
End˚pAq-modules, then the tensor product V˚ bK˚ W˚ inherits the structure of a left
End˚pAq-module by means of the comultiplication

∆ : End˚pAq Ñ End˚pAq bK˚ End˚pAq.

In the special case where V˚ “ ΓApXq and W˚ “ ΓApY q for X,Y P Syn♥
E , the isomor-

phism ΓApXqbK˚ ΓApY q » ΓApX bY q supplied by Proposition 6.6.3 is End˚pAq-linear.
In other words, we can regard the functor ΓA : Syn♥

E » LModgr
End˚pAqq of Proposi-

tion 6.4.12 as an equivalence of monoidal categories, where the monoidal structure on
LModgr

End˚pAq is obtained from the comultiplication on End˚pAq.

Proof of Theorem 6.6.6. Let A be an atomic algebra object of Syn♥
E . Combining Propo-

sitions 6.5.1 and 5.2.4, we can choose a bialgebra isomorphism End˚pAq »
Ź˚
K˚
pW q,

where W is some finite-dimensional vector space over κ. Applying Proposition 6.4.12, we
obtain an equivalence of monoidal categories F : Syn♥

E »MpW q, hence an isomorphism
of vector spaces

DF : m{m2 ψ
ÝÑ Ext1

Syn♥
E

p1♥r1s,1♥q
F
ÝÑ Ext1

MpW qpK˚r1s,K˚q »W_.

Composing F with the monoidal equivalence MpW q »Mppm{m2q_q determined by
DF , we can reduce to the case where W “ pm{m2q_ and F is normalized.

.

6.7 Milnor Modules Associated to a Polarization

Fix a Lubin-Tate spectrum E with residue field κ. Let m Ď π0E denote the maximal
ideal, and let K˚ denote the graded ring pπ˚Eq{mpπ˚Eq.
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Construction 6.7.1 (The Milnor Module of a Polarization). Let Λ be a lattice, let
Q : KpΛ, 1q Ñ PicpEq be a polarization, and let ThQ denote the Thom spectrum of
Q (see Definition 3.2.1). We let AQ denote the Milnor module SyrThQs associated to
the Thom spectrum ThQ, and we let Ared

Q denote the Milnor module SyrThred
Q s of the

reduced Thom spectrum Thred
Q (see Variant 3.2.2). We regard AQ as an associative

algebra object of the abelian category Syn♥
E of Milnor modules.

Our goal in this section is to relate the quadratic coefficient cQ2 of a polarization
Q : KpΛ, 1q Ñ PicpEq (in the sense of Construction 3.2.8) to the algebra structure
on the Milnor module AQ. Roughly speaking, our main result (Proposition 6.7.15)
articulates the idea that cQ2 measures the noncommutativity of the algebra AQ. This
result will be used in §6.8 to characterize those polarizations Q for which the Thom
spectrum ThQ is an Azumaya algebra, but otherwise plays no role in this paper.

Remark 6.7.2. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization. Then the Thom spectrum ThQ is nonzero (Proposition 3.3.2), so the
algebra AQ P Syn♥

E is also nonzero. It follows that the unit map e : 1♥ Ñ AQ is nonzero,
and therefore a monomorphism (since 1♥ is a simple object of the abelian category
Syn♥

E). The fiber sequence of spectra E Ñ ThQ Ñ Thred
Q determines a long exact

sequence
1♥ e
ÝÑ AQ Ñ Ared

Q Ñ 1♥r1s er1s
ÝÝÑ AQr1s

in the abelian category Syn♥
E . Using the injectivity of e, we obtain a short exact sequence

0 Ñ 1♥ e
ÝÑ AQ Ñ Ared

Q Ñ 0: that is, we can identify Ared
Q with the cokernel of the unit

map e : 1♥ Ñ AQ.

Example 6.7.3. Let Λ “ Z and let Q : KpΛ, 1q Ñ PicpEq be a polarization. Then we
have a canonical isomorphism Ared

Q » SyrΣEs “ 1♥r1s (see Variant 3.3.8). Beware that
this isomorphism depends on the choice of identification of Λ with Z.

Example 6.7.4. Let Λ “ Z and let Q : KpΛ, 1q Ñ PicpEq be the constant map taking
the value E P PicpEq. Then the Thom spectrum ThQ is equipped with an augmentation
ε : ThQ Ñ E, and therefore splits as a direct sum of E (via the unit map E Ñ ThQ)
and fibpεq » ΣE. It follows that AQ splits as a direct sum AQ » 1♥ ‘ 1♥r1s in the
abelian category Syn♥

E , where 1♥r1s is the kernel of an algebra map AQ Ñ 1♥ and
is therefore closed under multiplication. Since HomSyn♥

E
p1♥r1sb 1♥r1s,1♥r1sq » 0, it

follows that the direct sum decomposition AQ » 1♥ ‘ 1♥r1s exhibits AQ as the trivial
square zero extension of 1♥ by the module 1♥r1s.

Construction 6.7.5 (Derivations of AQ). Let Λ be a lattice and let Q : KpΛ, 1q Ñ
PicpEq be a nonsingular polarization. For each element λ_ of the dual lattice Λ_,
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the map Dλ_ : ThQ Ñ Σ ThQ of Remark 3.2.3 induces a map of Milnor modules
dλ_ : AQ Ñ AQr1s.

Proposition 6.7.6. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization. For each λ_ in the dual lattice Λ_, the map dλ_ : AQ Ñ AQr1s is a
derivation (of degree p´1q) in the category Syn♥

E: that is, it satisfies the equation

dλ_ ˝m “ m ˝ pdλ_ b idq `m ˝ pid bdλ_q P HomSyn♥
E
pAQ bAQ, AQr1sq,

where m denotes the multiplication on AQ.

Proof. We let Q` denote the composite map KpΛˆ Z, 1q Ñ KpΛ, 1q Q
ÝÑ PicpEq, which

we regard as a polarization of the lattice ΛˆZ. Let ThQ` denote the Thom spectrum of
Q`, which we regard as an algebra object of ModE . Since the formation of Thom spectra
is symmetric monoidal, we can identify ThQ` with the tensor product ThQbE ThQ0

as objects of AlgE , where Q0 : KpZ, 1q Ñ PicpEq is the constant map taking the
value E P PicpEq. Combining this observation with the analysis of Example 6.7.4, we
obtain a canonical isomorphism AQ` » AQ‘AQr1s in AlgpSyn♥

Eq, where the right hand
side denotes the trivial square-zero extension of AQ by the shift AQr1s (regarded as a
bimodule over AQ).

Let λ_ be an element of the dual lattice Λ_. Then the construction pλ P Λq ÞÑ
ppλ, xλ, λ_yq P Λ ˆ Zq determines a section of the projection map Λ ˆ Z Ñ Λ, and
therefore induces a map of Thom spectra ThQ Ñ ThQ` , hence a map of Milnor modules

φ : AQ Ñ AQ` » AQ ‘AQr1s.

Using the description of the cap product given in Remark 3.1.7, we see that φ is given by
pid, dλ_q. Since φ is a morphism of algebra objects, it follows that dλ_ is a derivation.

Remark 6.7.7. In the situation of Construction 6.7.5, the derivations dλ_ satisfy the
equations

dλ_`λ1_ “ dλ_ ` dλ1_ d2
λ_ “ 0.

These relations follow immediately from the analogous assertions for the maps Dλ_ :
ThQ Ñ Σ ThQ of Remark 3.2.3.

Construction 6.7.8. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization.
For each λ P Λ, we let αpλq P HomSyn♥

E
p1♥r1s, Ared

Q q denote the composition of the
isomorphism 1♥r1s » Ared

Qrλs of Example 6.7.3 with the natural map Ared
Qrλs Ñ Ared

Q .

In the situation of Construction 6.7.8, the map α is given by the composition

Λ rα
ÝÑ π1 Thred

Q Ñ HomSyn♥
E
p1♥r1s, Ared

Q q,
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where rα is defined as in Construction 3.3.9. Applying Proposition 3.3.10, we obtain the
following:

Proposition 6.7.9. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization. Then the map

α : Λ Ñ HomSyn♥
E
p1♥, Ared

Q q

of Construction 6.7.8 is a group homomorphism.

Remark 6.7.10. In the situation of Proposition 6.7.9, suppose that Q fails to be
nonsingular. Then ThQ » 0 (Proposition 3.3.2), so Remark 6.7.2 supplies a canonical
equivalence Ared

Q » 1♥r1s. Using this equivalence, we can identify α with the function
Λ Ñ HomSyn♥

E
p1♥r1s,1♥r1sq » κ given by the composition

Λ
cQ1
ÝÑ pπ0Eq

ˆ x ÞÑx´1
ÝÝÝÝÝÑ π0E Ñ κ.

In this case, α need not be a group homomorphism.

Remark 6.7.11. Let Λ be a lattice, let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization, and let λ_ P Λ_ be an element of the dual lattice. Then the derivation
dλ_ : AQ Ñ AQr1s automatically annihilates the unit map 1♥ Ñ AQ, and therefore
factors through a map Ared

Q Ñ AQr1s. For any element λ P Λ, the composite map

1♥r1s αpλq
ÝÝÝÑ Ared

Q
dλ_
ÝÝÑ AQr1s

is obtained by multiplying the unit map 1♥ Ñ AQ by the integer xλ, λ_y (this follows
from the functoriality of Construction 6.7.8).

Definition 6.7.12. Let Λ be a lattice, let Q : KpΛ, 1q Ñ PicpEq be a polarization of
Λ, and let cQ2 be the second coefficient of Q (Construction 3.2.8), which we regard as a
map Sym2pΛq Ñ π4 BPicpEq » π2E. We let bQ : Λˆ Λ Ñ π2K denote the symmetric
bilinear form given by the composition

Λˆ Λ Ñ Sym2pΛq
cQ2
ÝÑ π2E Ñ π2K.

We now describe the bilinear form bQ more explicitly in terms of the algebra
AQ P Syn♥

E .

Construction 6.7.13 (The Commutator Bracket). Let Λ be a lattice and let Q :
KpΛ, 1q Ñ PicpEq be a nonsingular polarization, so that AQ is an associative algebra
object of Syn♥

E . Let m : AQ b AQ Ñ AQ denote the multiplication on AQ, and let
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mop : AQ b AQ Ñ AQ be the opposite multiplication (that is, the composition of m
with the automorphism of AQ bAQ given by swapping the two factors). We regard the
difference m´mop as a morphism r‚, ‚s : AQ bAQ Ñ AQ in the abelian category Syn♥

E ,
which we will refer to as the commutator bracket. Note that the commutator bracket
annihilates the subobjects

1♥ bAQ, AQ b 1♥ Ď AQ bAQ,

and therefore factors uniquely through a map Ared
Q bAred

Q Ñ AQ, which we will denote
also by r‚, ‚s.

Remark 6.7.14. In the situation of Construction 6.7.13, suppose we are given a
monoidal functor F : Syn♥

E Ñ Modgr
K˚

. Then B “ F pAQq inherits the structure of a
graded K˚-algebra, and the commutator bracket map r‚, ‚s : AQbAQ Ñ AQ determines
a map s : BbK˚B Ñ B. If the functor F is symmetric monoidal, then we can identify s
with the “super-commutator”: that is, it is given by the formula spxbyq “ xy´p´1qijyx
for x P Bi and y P Bj . Beware that if F is not assumed to be symmetric monoidal, then
it is not possible to describe the map s using only the algebra structure of B.

We can now formulate our main result:

Proposition 6.7.15. Let Λ be a lattice, let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization, let α : Λ Ñ HomSyn♥

E
p1♥r1s, Ared

Q q be as in Construction 6.7.8, and let
bQ : Λˆ Λ Ñ π2K be the bilinear form of Definition 6.7.12. Then the diagram

Λˆ Λ

αˆα
��

bQ // π2K

��
HomSyn♥

E
p1♥r1s, Ared

Q q ˆHomSyn♥
E
p1♥r1s, Ared

Q q

b

��

HomSyn♥
E
p1♥r2s,1♥q

��
HomSyn♥

E
p1♥r2s, Ared

Q bAred
Q q

r‚,‚s // HomSyn♥
E
p1♥r2s, AQq

commutes.

Remark 6.7.16. In the situation of Proposition 6.7.15, suppose we are given an exact
Modgr

K˚
-linear monoidal functor F : Syn♥

E Ñ Modgr
K˚

, and set B “ F pAQq. The exact
sequence of Milnor modules

0 Ñ 1♥ Ñ AQ Ñ Ared
Q Ñ 0
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then determines an exact sequence of graded K˚-modules 0 Ñ K˚ Ñ B Ñ F pAred
Q q Ñ

0. For each λ P Λ, we can identify F pαpλqq with an element of F pAred
Q q which is

homogeneous of degree 1, which can be lifted uniquely to an element apλq P B1. In
this case, Proposition 6.7.15 supplies a formula spapλq b apλ1qq “ bQpλ, λ1q in B, where
both sides are homogeneous of degree 2 (here s : B bK˚ B Ñ B is the map of Remark
6.7.14). If the functor F is assumed to be symmetric monoidal, then we can rewrite
this formula as apλqapλ1q ` apλ1qapλq “ bQpλ, λ1q.

Proof of Proposition 6.7.15. Choose elements λ, λ1 P Λ; we wish to prove the identity

rαpλq, αpλ1qs “ bQpλ, λ1q

in the abelian group HomSyn♥
E
p1♥r2s, AQq. By functoriality, we can reduce to the case

where λ and λ1 form a basis for Λ. Let λ_ and λ1_ be the dual basis for Λ_. Let
m,mop : AQrλs bAQrλ1s Ñ AQ denote the isomorphisms induced by the multiplication
on AQ and its opposite, respectively. Using Example 3.3.6, we see that mop is given by
composing m with the map id´bQpλ, λ1qdλ_dλ1_ . It follows that the composite map

AQrλs bAQrλ1s Ñ AQ bAQ
r‚,‚s
ÝÝÝÑ AQ

is equal to the the composition

AQrλs bAQrλ1s
m
ÝÑ AQ

dλ_dλ1_
ÝÝÝÝÝÑ AQr2s

bQpλ,λ1q
ÝÝÝÝÝÑ AQ.

Using the fact that dλ_ and dλ1_ are derivations which vanish on AQrλ1s and AQrλs,
respectively, we can rewrite this composition as

AQrλs bAQrλ1s
dλ_bdλ1_
ÝÝÝÝÝÝÑ AQrλsr1sbAQrλ1sr1s

m
ÝÑ AQr2s

bQpλ,λ1q
ÝÝÝÝÝÑ AQ.

Combining this observation with Remark 6.7.11, we see that the restriction of the map
r‚, ‚s : Ared

Q bAred
Q Ñ AQ to Ared

Qrλs bAred
Qrλ1s is given by the composition

Ared
Qrλs bAred

Qrλ1s » 1♥r1sb 1♥r1s bQpλ,λ1q
ÝÝÝÝÝÑÑ 1♥ Ñ AQ,

from which we conclude that rαpλq, αpλ1qs “ bQpλ, λ1q as desired.

6.8 Nondegenerate Polarizations

Fix a Lubin-Tate spectrum E with residue field κ. Let m Ď π0E denote the maximal
ideal, and let K˚ denote the graded ring pπ˚Eq{mpπ˚Eq.
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Definition 6.8.1. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization.
We will say that Q is nondegenerate if it is nonsingular and the bilinear form bQ :
ΛˆΛ Ñ π2K of Definition 6.7.12 is nondegenerate (that is, the bilinear form bQ induces
a vector space isomorphism κbZ Λ Ñ pπ2Kq bZ Λ_.

Our goal in this section is to prove the following:

Theorem 6.8.2. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a polarization.
Then Q is nondegenerate if and only if the Thom spectrum ThQ is an Azumaya algebra
over E.

The proof of Theorem 6.8.2 will require some preliminaries.

Notation 6.8.3. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization. For each λ P Λ, we let rαpλq, ‚s : AQ Ñ AQr´1s denote the map given by
the composition

AQ » 1♥r1sbAQr´1s αpλqbid
ÝÝÝÝÝÑ Ared

Q bAQr´1s r‚,‚sÝÝÝÑ AQr´1s.

Proposition 6.8.4. Let Λ be a lattice, let Q : KpΛ, 1q Ñ PicpEq be a nonsingular
polarization For each λ P Λ, the map rαpλq, ‚s : AQ Ñ AQr´1s of Notation 6.8.3 can be
identified with the image of λ under the composite map

Λ u
ÝÑ pπ2Kq bZ Λ_ v

ÝÑ pπ2Kq bZ HomSyn♥
E
pAQ, AQr1sq » HomSyn♥

E
pAQ, AQr´1sq,

where u is the map classifying the bilinear form bQ : Λˆ Λ Ñ π2K of Definition 6.7.12,
and v is induced by the homomorphism λ_ ÞÑ dλ_.

Proof. Let D : AQ Ñ AQr´1s denote the difference between rαpλq, ‚s and pv ˝ uqpλq;
we wish to show that D “ 0. Choose a basis λ1, . . . , λn for the lattice Λ, so that the
multiplication on AQ induces an isomorphism AQrλ1s b ¨ ¨ ¨bAQrλns Ñ AQ. Since D is
a derivation, it will suffice to show that D vanishes on each AQrλis. Factoring D as a

composition AQ Ñ Ared
Q

Dred
ÝÝÝÑ AQr´1s, we are reduced to showing that the composition

1♥r1s αpλiq
ÝÝÝÑ Ared

Q Ñ DredAQr´1s vanishes, which follows immediately from Proposition
6.7.15 and Remark 6.7.11.

Proof of Theorem 6.8.2. Let Q : KpΛ, 1q Ñ PicpEq be a polarization of a lattice Λ. We
wish to show that Q is nondegenerate if and only if the Thom spectrum ThQ is an
Azumaya algebra. Without loss of generality we may assume that Q is nonsingular
(Proposition 3.3.2). In this case, ThQ is nonzero and dualizable as an E-module (Remark
3.2.5). It will therefore suffice to prove that the following assertions are equivalent:

101



p1q The left and right actions of AQ on itself induce an isomorphism ξ : AQ bAop
Q Ñ

EndpAQq in the abelian category Syn♥
E .

p2q The bilinear form bQ of Definition 6.7.12 is nondegenerate.

Using Theorem 6.6.6, we can choose an exact Modgr
K˚

-linear monoidal functor
F : Syn♥

E Ñ Modgr
K˚

(beware that if the characteristic of κ is 2, we cannot necessarily
arrange that F is symmetric monoidal). Set A1 “ F pAQq and A1 red “ F pAred

Q q, so that
we can regard A1 as a graded K˚-algebra. The map α of Construction 6.7.8 determines
a group homomorphism α1 : Λ Ñ HomK˚pK˚r1s, A1 redq “ A1 red

1 » A1. Let ξ1 “ F pξq,
which we regard as a morphism of graded K˚-modules A1 bK˚ A1 Ñ EndK˚pA1q. Since
F is a monoidal functor, the restriction of ξ1 to the first tensor factor A1 » A1bK˚K˚ Ď
A1 bK˚ A

1 is an algebra homomorphism, which classifies the left action of A1 on itself
(beware that since F is not necessarily symmetric monoidal, we cannot assume that ξ1
is an algebra homomorphism, or that the restriction of ξ1 to the second factor classifies
the right action of A1 on itself). Since ξ is an algebra homomorphism, the image of ξ
is a subalgebra of EndpAQq. It follows that Impξ1q “ F pImpξqq is also a subalgebra of
EndK˚pA1q.

Choose a basis λ1, λ2, . . . , λn P Λ. For 1 ď i ď n, set A1piq “ F pAQrλisq and
ai “ λpαiq. It follows from Remark 3.3.4 that the multiplication on A1 induces an
isomorphism

A1p1q bK˚ ¨ ¨ ¨ bK˚ A1pnq Ñ A1.

It follows that A1 is freely generated, as a module over K˚, by the ordered products
aI “ ai1 ¨ ¨ ¨ aim P A

1
m, where I “ ti1 ă ¨ ¨ ¨ ă imu ranges over all subsets of t1, . . . , nu. It

follows that the construction pλ P Λq ÞÑ α1pλq b 1´ 1b α1pλq induces a monomorphism
of vector spaces κbZ Λ Ñ pA1bK˚ A

1q1. Consequently, if the map ξ1 is an isomorphism,
then the map

pλ P Λq ÞÑ ξ1pα1pλq b 1´ 1b α1pλqq “ F prαpλ, ‚qsq

induces a monomorphism κbZ Λ Ñ HomK˚pA
1, A1r´1sq. It follows from Proposition

6.8.4 that this map factors through the map u : κbZ Λ Ñ pπ2Kq bZ Λ_ determined by
the bilinear form bQ, so that bQ is nondegenerate. This shows that p1q implies p2q.

We now complete the proof by showing that p2q ñ p1q. Assume that the bilinear
form bQ is nondegenerate; we wish to show that ξ is an isomorphism in Syn♥

E . Let
λ_1 , . . . , λ

_
n P Λ_ be the dual basis of λ1, . . . , λn P Λ. For 1 ď i ď n, let d1i : A1 Ñ A1r1s

be the image under the functor F of the derivation dλ_i : AQ Ñ AQr1s. Then each d1i is
a derivation of the graded K˚-algebra A1, which is homogeneous of degree 1. Using the

calculation of Remark 6.7.11, we compute d1ipajq “
#

1 if i “ j

0 otherwise.
. For each subset
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I “ ti1 ă i2 ă ¨ ¨ ¨ ă imu Ď t1, . . . , nu, set d1I “ d1im ˝ ¨ ¨ ¨ ˝ d
1
i1 P EndK˚pA1q´|I|. Note

that for J Ď t1, . . . , nu, we have

d1IpaJq “

#

1 if I “ J

0 if I ‰ J, |I| ě |J |.

Using the nondegeneracy of bQ and Proposition 6.8.4, we conclude that each d_λi
belongs to the image of the map ξ, so that d1i belongs to the image of the map ξ1. Note
that the domain and codomain of ξ1 are free K˚-modules of the same rank. Consequently,
to show that ξ1 is an isomorphism, it will suffice to show that ξ1 is surjective. Let
f be a homogeneous element of EndK˚pA1q; we wish to show that f belongs to the
image of the map ξ1. If f “ 0, there is nothing to prove. Otherwise, there exists a
subset I Ď t1, . . . , nu such that fpaIq ‰ 0. Choose I such that m “ |I| is as small as
possible. We proceed by descending induction on m. For every homogeneous element
x of A1, let lx P EndK˚pA1q be the map given by left multiplication by x. Define
f 1 P EndK˚pA1q by the formula f 1 “

ř

JĎt1,...,mu lfpaJ qd
1
J . Then f 1 is a homogeneous

element of EndK˚pA1q (of the same degree as f). Moreover, since the image of ξ1 is
a subalgebra of A1 which contains each d1i and each lx, the endomorphism f 1 belongs
to the image of ξ1. Consequently, to show that f belongs to the image of ξ1, it will
suffice to show that f ´ f 1 belongs to the image of ξ1. This follows from our inductive
hypothesis, since pf ´ f 1qpaJq “ 0 whenever |J | ď m.

6.9 The Case of an Odd Prime

Let E be a Lubin-Tate spectrum, let m Ď π0E be the maximal ideal, and let
V “ pm{m2q denote the Zariski tangent space of the Lubin-Tate ring π0E. If the residue
field κ “ pπ0Eq{m has characteristic ‰ 2, then we can promote the equivalence Theorem
6.6.6 to a symmetric monoidal functor.

Proposition 6.9.1. Suppose that the residue field κ has characteristic ‰ 2. Then
there exists a normalized Modgr

K˚
-linear symmetric monoidal equivalence of categories

F : Syn♥
E »MpV q. Moreover, the equivalence F is unique (up to unique isomorphism).

Proof. Using Proposition 3.5.1, we can choose an atomic commutative algebra A in
the homotopy category hModE. Let A “ Sy♥rAs denote the associated Milnor module,
so that Construction 6.4.8 supplies a symmetric monoidal equivalence ΓA : Syn♥

E Ñ

Modgr
End˚pAq (see Remark 6.6.2). Arguing as in the proof of Theorem 6.6.6, we can

identify Modgr
End˚pAq with the categoryMpV q so that the functor F is normalized. This

proves the existence of F .
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Now suppose that F 1 : Syn♥
E ÑMpV q is another normalized Modgr

K˚
-linear sym-

metric monoidal equivalence. Then F 1 ˝ F´1 is a normalized symmetric monoidal
Modgr

K˚
-linear equivalence of the 8-category MpV q with itself. Using Proposition 5.6.5,

we can choose an isomorphism F 1 ˝ F´1 » µBB for some atomic algebra B P AlgpMpV qq.
Write B “ ClqpV _q for some quadratic form q : V _ “ m{m2 Ñ K2 (Proposition 5.3.5).
Using our assumption that the functor F 1 ˝ F´1 is symmetric monoidal, we deduce that
B is a commutative algebra object of MpV q, so that the quadratic form q vanishes.
It follows that there is a unique isomorphism of Modgr

K˚
-linear symmetric monoidal

functors µBB » id, and therefore a unique isomorphism F » F 1.

Corollary 6.9.2. Suppose that the residue field κ has characteristic ‰ 2. Then there
exists a unique atomic commutative algebra object of the homotopy category hModE (up
to unique isomorphism).

Proof of Corollary 6.9.2. Using Proposition 6.9.1, we are reduced to showing that the
category MpV q contains a unique atomic commutative algebra object (up to unique
isomorphism). Using Proposition 5.3.5, we see that every atomic algebra object of
MpV q is isomorphic (in a unique way) to a Clifford algebra ClqpV _q; such an algebra
is commutative if and only if q “ 0.

Using Corollary 6.9.2, we can give a concrete description of the Brauer-Milnor group
BMpEq at odd primes:

Proposition 6.9.3. Let E be a Lubin-Tate spectrum whose residue field has char-
acteristic different from 2. Then there is a canonical isomorphism ρ : BMpEq »
BrpModgr

K˚
q ˆQF, where QF denotes the set of quadratic forms q : pm{m2q_ Ñ K´2.

Proof. Combine Theorem 5.7.6 with Proposition 6.9.1.

Remark 6.9.4. A choice of nonzero element t P K2 determines an isomorphism of
Brauer groups BrpModgr

K˚
q » BWpκq, and an isomorphism QF » m2{m3. In this case,

Proposition 6.9.3 supplies an isomorphism

BMpEq » BWpκq ˆm2{m3.

Beware that this isomorphism depends on the choice of t.

Remark 6.9.5. Let E be a Lubin-Tate spectrum of arbitrary residue characteristic. The
fully faithful embedding Modgr

K˚
Ñ SyncE constructed in §6.3 induces a monomorphism

of Brauer groups
ι : BrpModgr

K˚
q Ñ BrpSyn♥

Eq “ BMpEq,
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whose domain can be identified with the Brauer-Wall group BWpκq (by choosing a
nonzero element t P π2K). Using Remark 2.3.3, we see that ι fits into a commutative
diagram

BrpModgr
K˚
q

ι //

η

��

BMpEq

η

��
π0 PicpModgr

K˚
q // π0 PicpSyn♥

Eq.

Here the bottom vertical map is an isomorphism (Corollary 6.6.8), with both groups
being isomorphic to Z{2Z. Using the classical theory of the Brauer-Wall group, one
can show that the left vertical map is surjective when κ has odd characteristic, but
vanishes when κ has characteristic 2. However, one can show that the right vertical map
is always surjective. Consequently, it is possible to view the failure of Proposition 6.9.3
in characteristic 2 as a feature, rather than a bug. The Brauer-Wall group exhibits some
degenerate behavior over fields of characteristic 2 that is not shared by the Brauer-Milnor
group, so we cannot expect to reduce the latter to the former.

By virtue of Theorem 6.8.2, the Thom spectrum construction Q ÞÑ ThQ can be
used to produce many examples of Azumaya algebras over E. Using the isomorphism
of Proposition 6.9.3, we can describe their images in the Brauer-Morava group BMpEq.

Proposition 6.9.6. Assume that the residue field κ of E has characteristic different
from 2. Let Λ be a lattice and let Q : KpΛ, 1q Ñ PicpEq be a nondegenerate polarization,
so that AQ is an Azumaya algebra object of Syn♥

E representing a Brauer class rAQs P
BMpEq. Then ρprAQsq “ px, qq, where:

paq The class x P BrpModgr
K˚
q is represented by the Clifford algebra ClupκbZ Λq of the

quadratic form u : pκbZ Λq Ñ π2K associated to the bilinear form bQ : Λˆ Λ Ñ
π2K of Definition 6.7.12 (so that upλq “ 1

2b
Qpλ, λq for each λ P Λ).

pbq The quadratic form q : pm{m2q_ Ñ π´2K is given by the composition

pm{m2q_
ξ
ÝÑ HomZpΛ, κq Ñ θπ´2K bZ Λ u

ÝÑ π´2K,

where θ is the isomorphism induced by the (nondegenerate) bilinear form bQ and
ξ is the dual of the map cQ1 : pκbZ Λq Ñ m{m2 appearing in Construction 3.4.1.

Proof. Set V “ pm{m2q_ and let H “ Λ˚K˚pV q be denote the exterior algebra over
V . Since the characteristic of κ is different from 2, there is an essentially unique
normalized symmetric monoidal equivalence F : Syn♥

E Ñ Modgr
H . Let A1 “ F pAQq and

α1 : Λ Ñ A11 be as in the proof of Proposition 6.8.2. Using Remark 6.7.16, we see
that α1pλqα1pλ1q ` α1pλ1q ` α1pλq “ bQpλ, λ1q for λ, λ1 P Λ, so that α1 induces a graded
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K˚-algebra homomorphism ClupκbZ Λq Ñ A1. The analysis of Proposition 6.8.2 shows
that this map is an isomorphism, so that x “ rA1s “ rClupκbZ Λqs, which proves paq.

To prove pbq, we need to analyze the action of the Hopf algebra H on A1. For each
v P V , let Bv : A1 Ñ A1r1s denote the derivation (of degree ´1) determined by v. Note
that, for each λ P Λ, the element Bvpα1pλqq is an element of A1 which is homogeneous of
degree zero which belongs to the image of the canonical map F pAQrλsq Ñ F pAQq “ A1.
It follows that Bvpα1pλqq “ cv,λ for some scalar cv,λ P κ. Our assumption that F is
normalized implies that cv,λ “ ξpvqpλq, so that the derivation Bv is given by (super)-
commutation with the element θpξpvqq P A´1. Unwinding the definitions, we obtain
qpvq “ θpξpvqq2 “ upθpξpvqqq, which proves pbq.
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Chapter 7

Hochschild Cohomology

Let E be a Lubin-Tate spectrum and let Syn♥
E denote the category of Milnor modules

studied in §6. In this section, we associate to each algebra object A P AlgpSyn♥
Eq a

bigraded ring HC˚,˚pAq, which we call the Hochschild cohomology of A (Definition 7.2.1).
Our main goals are to show that the Hochschild cohomology groups HC˚,˚pAq control
the problem of lifting A to an associative algebra object of SynE (see §7.3), and to
compute HC˚,˚pAq in the case where A is an Azumaya algebra (Proposition 7.2.7).

7.1 Digression: Modules in SynE and Syn♥E
Let E be a Lubin-Tate spectrum and let SynE denote the 8-category of synthetic

E-modules. We can regard SynE as a tool for relating questions about the homotopy
theory of E-module spectra to more concrete questions about linear algebra. More
precisely, we have shown that the 8-category SynE has two features:

paq It contains the stable 8-category Modloc
E of Kpnq-local E-modules as a full sub-

category (Proposition 4.2.5).

pbq The heart of SynE is the abelian category Syn♥
E of Milnor modules, which can be

identified with the category of graded modules over an exterior algebra (Theorem
6.6.6).

To make effective use of paq and pbq, we would like to know to what extent the8-category
SynE is determined by its heart Syn♥

E . It is not true that SynE can be identified with
(the connective part of) the derived category of the abelian category Syn♥

E : for example,
the 8-category SynE is not Z-linear. However, we will show that the next best thing
is true: for every associative algebra A of Syn♥

E , the 8-category LModApSynEq can be
identified with (the connective part of) the derived category of the abelian category
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LModApSyn♥
Eq (Proposition 7.1.4). To prove this, we need to compare the symmetric

monoidal structures on SynE and Syn♥
E .

Lemma 7.1.1. Let M be an E-module. Then the canonical map θ : SyrM s ^ 1♥ Ñ
Sy♥rM s is an equivalence of synthetic E-modules.

Proof. The map θ fits into a commutative diagram of cofiber sequences

SyrM s ^ ΣΩ1

θ2

��

// SyrM s ^ 1

θ1

��

// SyrM s ^ 1♥

θ
��

ΣΩ SyrM s // SyrM s // Sy♥rM s.

Using the left exactness of the functor M ÞÑ Sy♥rM s, we see that θ2 can be identified
with the suspension of the canonical map SyrM s ^ SyrΣ´1Es Ñ SyrΣ´1M s. Applying
Proposition 4.4.7, we conclude that θ1 and θ2 are equivalences, so that θ is also an
equivalence.

Proposition 7.1.2. The inclusion functor

Syn♥
E » Mod1♥pSyn♥

Eq ãÑ Mod1♥pSynEq

is symmetric monoidal. In other words, if X and Y are Milnor modules, then the
relative smash product X ^1♥ Y P SynE is discrete (and can therefore be identified with
the Milnor module X b Y “ π0pX ^1♥ Y q).

Proof. Let X and Y be Milnor modules; we will show that the Milnor modules πnpX^1♥

Y q vanish for n ą 0. Our proof proceeds by induction on n. Choose an exact sequence
of Milnor modules 0 Ñ X 1 Ñ P Ñ X Ñ 0, where P is quasi-molecular (Remark 6.2.3).
We then have a long exact sequence of homotopy groups

πnpP ^1♥ Y q Ñ πnpX ^1♥ Y q Ñ πn´1pX
1 ^1♥ Y q Ñ πn´1pP ^1♥ Y q.

Consequently, it will suffice to prove the following:

piq The groups πnpP ^1♥ Y q vanish for n ą 0.

piiq The canonical map π0pX
1 ^1♥ Y q Ñ π0pP ^1♥ Y is a monomorphism (in the

abelian category Syn♥
E).

Assertion piiq follows immediately from Corollary 6.6.7. To prove piq, we can replace X
by P and thereby reduce to the case where X “ Sy♥rM s, where M is a quasi-molecular
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E-module. Similarly, we may assume that Y “ Sy♥rN s, where N is a quasi-molecular
E-module. In this case, we apply Lemma 7.1.1 to compute

X ^1♥ Y » pSyrM s ^ 1♥q ^1♥ pSyrN s ^ 1♥q

» SyrM s ^ SyrN s ^ 1♥

» SyrM bE N s ^ 1♥

» Sy♥rM bE N s.

Notation 7.1.3. Let A be an associative algebra object of the 8-category of synthetic
E-modules SynE . We let SynA denote the 8-category LModApSynEq of left A-module
objects of SynE , and we let Syn♥

A “ LModApSyn♥
Eq denote the full subcategory of SynA

spanned by the discrete objects.

Proposition 7.1.4. Let A be an algebra object of the abelian category Syn♥
E. Then the

inclusion functor Syn♥
A ãÑ SynA extends to an equivalence of 8-categories DpSyn♥

Aqě0 »
SynA.

Proof. By construction, the 8-category SynE admits compact projective generators
given by SyrM s, where M is a molecular E-module. It follows that SynA admits compact
projective generators given by A^SyrM s, where M is a molecular E-module. By virtue
of Proposition HA.1.3.3.7 , it will suffice to show that each of the synthetic E-modules
A^ SyrM s is discrete. Using the equivalence

A^ SyrM s » A^1♥ p1♥ ^ SyrM sq

and invoking Proposition 7.1.2, we can reduce to the case where A “ 1♥, in which case
the desired result follows from Lemma 7.1.1.

7.2 Hochschild Cohomology of Milnor Modules

Throughout this section, we fix a Lubin-Tate spectrum E. Let m Ď π0E be the
maximal ideal, let K˚ denote the graded ring pπ˚Eq{mpπ˚Eq, and let Syn♥

E denote
the category of Milnor modules. For every pair of algebras A,B P AlgpSyn♥

Eq, we let
ABModBpSyn♥

Eq denote the abelian category of A-B bimodule objects of Syn♥
E .

Definition 7.2.1. [Hochschild Cohomology] Let A be an associative algebra in the
category Syn♥

E . For every pair of integers i, j P Z, we define

HCi,jpAq “ Exti
ABModApSyn♥

Eq
pA,Arjsq.

We will refer to HCi,jpAq as the Hochschild cohomology groups of A.
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Remark 7.2.2. Let A be an algebra object of Syn♥
E . Then the Yoneda product on

Ext˚
ABModApSyn♥

Eq
p‚, ‚q endows HC˚,˚pAq with the structure of a bigraded ring. Moreover,

it satisfies the bigraded commutative law xy “ p´1qii1`jj1yx P HCi`i1,j`j1pAq for x P
HCi,jpAq and y P HCi1,j1pAq.

Remark 7.2.3 (Periodicity). Let A be an algebra object of Syn♥
E . Then the graded ring

K˚ acts on HC˚,˚pAq by means of maps Km ˆHCi,jpAq Ñ HCi,j´mpAq. We therefore
obtain periodicity isomorphisms

pπ2mKq bκ HCi,jpAq » HCi,j´2mpAq.

Remark 7.2.4 (Functoriality of Hochschild Cohomology). Let A and B be algebra
objects of Syn♥

E . Using Corollary 6.6.7, we see that the construction M ÞÑ M b B
determines an exact functor of abelian categories

F : ABModApSyn♥
Eq Ñ AbBBModAbBpSyn♥

Eq.

In particular, for every pair of bimodules M,N P ABModApSyn♥
Eq, we get a canonical

map
Ext˚

ABModApSyn♥
Eq
pM,Nq Ñ Ext˚

AbBBModAbBpSyn♥
Eq
pM bB,N bBq.

Taking M “ A and N “ Arjs, we obtain maps of Hochschild cohomology groups
HCi,jpAq Ñ HCi,jpA b Bq. It is easy to see that these maps are compatible with
composition, and therefore yield a bigraded ring homomorphism

HC˚,˚pAq Ñ HC˚,˚pAbBq.

Using the results of §7.1, we can give an alternative description of the Hochschild
cohomology groups HC˚,˚pAq.

Proposition 7.2.5. Let A and B be algebra objects of Syn♥
E. Then the inclusion functor

ABModBpSyn♥
Eq ãÑ ABModBpSyn1♥q

extends to an equivalence of 8-categories DpABModBpSyn♥
Eqqě0 » ABModBpSyn1♥q.

Proof. Combine Propositions 7.1.4 and 7.1.2.

Corollary 7.2.6. Let A and B be algebra objects of Syn♥
E. Then, for every pair of

objects M,N P ABModBpSyn♥
Eq, the canonical map

Ext˚
ABModBpSyn♥

Eq
pM,Nq Ñ Ext˚

ABModBpSyn1♥ q
pM,Nq

is an isomorphism of graded abelian groups. In particular, we have canonical isomor-
phisms

HCi,jpAq Ñ Exti
ABModApSyn1♥ q

pA,Arjsq.
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We now compute Hochschild cohomology in some particularly simple examples.
Proposition 7.2.7. Let E be a Lubin-Tate spectrum and let

ψ : m{m2 Ñ Ext1
Syn♥

E

p1♥,1♥r´1sq Ñ HC1,´1p1♥q

be the isomorphism of Theorem 6.5.4. Then ψ extends to an isomorphism of bigraded
rings

K˚ bκ Sym˚pm{m2q » HC˚,˚p1♥q

Km bκ Symnpm{m2q » HCn,´m´np1♥q.

Proof. Combine Theorem 6.6.6 with Proposition 5.5.6.

Let A and B be algebra objects of the category Mod♥
E . If A is an Azumaya algebra,

then the extension of scalars functor

BBModBpSyn♥
Eq Ñ AbBBModAbBpSyn♥

Eq M ÞÑM bA

is an equivalence of categories, and therefore induces an isomorphism of bigraded rings
HC˚,˚pBq Ñ HC˚,˚pA b Bq. Combining this observation with Proposition 7.2.7, we
obtain the following:
Corollary 7.2.8. Let A be an Azumaya algebra object of Syn♥

E. Then we have canonical
isomorphisms

HCi,jpAq » K´i´j bκ pm
i{mi`1q,

which determine an isomorphism of bigraded rings HC˚,˚pAq » K˚ bκ Sym˚pm{m2q.

7.3 Obstruction Theory

Let E be a Lubin-Tate specturm, which we regard as fixed throughout this section.
We would like to analyze the structure of the 8-category SynE by bootstrapping from
the description of the abelian category Syn♥

E given in §6. Our strategy will to study the
relationships between the 8-categories τďn SynE of n-truncated synthetic E-modules
as n varies.
Notation 7.3.1. Let n be a nonnegative integer. We let 1ďn denote the synthetic
E-module τďn1. More concretely, 1ďn is the functor which assigns to each molecular
E-module M the n-truncated space

1ďnpMq “ τďn MapModE pM,Eq “ τďnΩ8M_.

Note that we have a tower

1 Ñ ¨ ¨ ¨ Ñ 1ď3 Ñ 1ď2 Ñ 1ď1 Ñ 1ď0 “ 1♥

in the 8-category SynE .
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Notation 7.3.2. For each n ě 0, we can regard 1ďn as a commutative algebra object
of the symmetric monoidal 8-category SynE . We let Syn1ďn denote the 8-category
Mod1ďnpSynEq (see Notation 7.1.3). Note that the forgetful functor Syn1ďn Ñ SynE
induces an equivalence on n-truncated objects (in other words, every n-truncated
synthetic E-module can be regarded as a module over 1ďn in an essentially unique way).

The following observation will be useful for comparing the 8-categories Syn1ďn and
τďn SynE .

Proposition 7.3.3. Let n be a nonnegative integer and let X be a dualizable object of
the symmetric monoidal 8-category Syn1ďn. Then X is n-truncated.

Proof. Let X_ be a dual of X in the 8-category Syn1ďn . For each object Y P Syn1ďn ,
we have a canonical homotopy equivalence

MapSyn1ďn
pY,Xq » MapSyn1ďn

pY ^1ďn X
_,1ďnq.

Since 1ďn is an n-truncated object of Syn1ďn , it follows that the mapping space
MapSyn1ďn

pY,Xq is n-truncated.

Corollary 7.3.4. Let X be a dualizable object of Syn1ďn. Then, for 0 ď m ď n, the
canonical map ρ : X ^1ďn 1ďm Ñ τďmX is an equivalence.

Proof. It is clear that ρ exhibits τďmX as an m-truncation of X^1ďn1ďm. Consequently,
it will suffice to show that the relative smash product X ^1ďn 1ďm is m-truncated.
This follows from Proposition 7.3.3, since X ^1ďn 1ďm is dualizable as a module over
1ďm.

Proposition 7.3.5. Let n be a positive integer. Then the commutative algebra 1ďn is
a square-zero extension of 1ďn´1 by the module Σn1♥r´ns. In other words, there exists
a pullback diagram σ :

1ďn //

��

1ďn´1

d
��

1ďn´1 d0 // 1ďn´1 ‘ Σn`11♥r´ns.

in the 8-category CAlgpSynEq of commutative algebra objects of SynE. Here d0 denotes
the tautological map from 1ďn´1 to the trivial square zero extension 1ďn´1‘Σn`11♥r´ns,
and d is some other section of the projection map 1ďn´1 ‘ Σn`11♥r´ns Ñ 1ďn´1.

Proof. This is a special case of Theorem HA.7.4.1.26 .
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Proposition 7.3.6. Let n be a positive integer and set C “ Syn1ďn´1‘Σn`11♥r´ns. Then
the pullback diagram σ of Proposition 7.3.5 induces a pullback diagram of symmetric
monoidal 8-categories τ :

Syn1ďn //

��

Syn1ďn´1

d˚

��
Syn1ďn´1

d˚0 // C .

Proof. The diagram τ determines a functor

F : Syn1ďn Ñ Syn1ďn´1 ˆC Syn1ďn´1 .

Let us identify objects of the codomain of F with triples pX,Y, αq, whereX,Y P Syn1ďn´1

and α : d˚Y » d˚0X is an equivalence. The functor F admits a right adjoint G, given by
the construction GpX,Y, αq “ X ˆd˚0X

Y . We first claim that the unit map id Ñ G ˝ F
is an equivalence: that is, for every object X P Syn1ďn , the diagram σX :

X //

��

X ^1ďn 1ďn´1

��
X ^1ďn 1ďn´1 // X ^1ďn p1ďn´1 ‘ Σn`11♥r´nsq

is a pullback square in the 8-category Syn1ďn . This is clear: the diagram σX is a
pushout square (since σ is a pushout square and the relative smash product functor
^1ďn preserves colimits in each variable), and therefore also a pullback square (since
the 8-category Syn1ďn is prestable). This proves that the functor F is fully faithful.

To complete the proof, it will suffice to show that the functor G is conservative.
Let u be a morphism in the 8-category Syn1ďn´1 ˆC Syn1ďn´1 for which Gpuq is an
equivalence in Syn1ďn ; we wish to show that u is an equivalence. An easy calculation
shows that G is right exact, so that Gpcofibpuqq » cofibpGpuqq » 0. We will complete the
proof by showing that cofibpuq » 0. Suppose otherwise, and write cofibpuq “ pX,Y, αq.
Then there exists some smallest integer k such that either πkX ‰ 0 or πkY ‰ 0. Without
loss of generality, we may suppose that πkY ‰ 0 and πiX » 0 for 0 ď i ă k. It then
follows that the projection map πkpX ˆd˚0X

Y q Ñ πkY is an epimorphism, so that
GpX,Y, αq ‰ 0 and we obtain a contradiction.

Corollary 7.3.7. Let n be a nonnegative integer. Then:

paq An object X P Syn1ďn is zero if and only if X ^1ďn 1♥ is zero.

pbq An object X P Syn1ďn is dualizable if and only if X^1ďn 1♥ P Syn1♥ is dualizable.
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pcq A morphism X Ñ Y in Syn1ďn is an equivalence if and only if the induced map
X ^1ďn 1♥ Ñ Y ^1ďn 1♥ is an equivalence.

pdq An associative algebra object A P AlgpSyn1ďnq is an Azumaya algebra if and only
if A^1ďn 1♥ is an Azumaya algebra object of Syn1♥.

Proof. Assertions paq and pbq follow from Proposition 7.3.6 using induction on n. Asser-
tion pcq follows from paq (since a morphism α : X Ñ Y is an equivalence if and only if
cofibpαq » 0). To prove pdq, let A P AlgpSyn1ďnq and set A0 “ A^1ďn 1♥. Then A is
full if and only if A0 is full (this follows from paq and Lemma 8.1.5) and A is dualizable if
and only if A0 is dualizable (this follows from pbq). If these conditions are satisfied, then
the canonical map A^ 1ďnAop Ñ EndpAq is an equivalence if and only if the canonical
map A0 ^1♥ A

op
0 Ñ EndpA0q is an an equivalence (by virtue of pcq). Using the criterion

of Corollary 2.2.3, we deduce that A is Azumaya if and only if A0 is Azumaya.

Corollary 7.3.8. The functor Sy♥ : Modloc
E Ñ Syn♥

E is conservative.

Proof. Let f : M Ñ N be a morphism in Modloc
E for which the induced map Sy♥rM s Ñ

Sy♥rN s is an isomorphism of Milnor modules. Combining Corollary 7.3.7 with Lemma
7.1.1, we deduce that f induces an equivalence 1ďn ^ SyrM s Ñ 1ďn ^ SyrN s for every
integer n. Allowing n to vary, we deduce that Syrf s is an equivalence of synthetic
E-modules, so that f is an equivalence by virtue of Proposition 4.2.5.

We now introduce some notation which will be useful for exploiting Proposition
7.3.6.

Construction 7.3.9. Fix an integer n ą 0 and let

d, d0 : 1ďn´1 Ñ 1ďn´1 ‘ Σn`11♥r´ns

be as in Proposition 7.3.5. Then d and d0 induce symmetric monoidal functors

d˚, d˚0 : Syn1ďn´1 Ñ Syn1ďn´1‘Σn`11♥r´ns

(given by extension of scalars along d and d0, respectively). These functors admit lax
symmetric monoidal right adjoints

d˚, d0˚ : Syn1ďn´1 ‘Σn`11♥r´ns Ñ Syn1ďn´1

(given by restriction of scalars along d and d0, respectively). We let

Θ “ pd˚ ˝ d
˚
0q : Syn1ďn´1 Ñ Syn1ďn´1

denote the composition of d˚ with d˚0 , which we regard as a lax symmetric monoidal
functor from the 8-category Syn1ďn´1 to itself. Note that the projection map 1ďn´1 ‘
Σn`11♥r´ns Ñ 1ďn´1 induces a lax symmetric monoidal natural transformation φ :
Θ Ñ id.

114



Remark 7.3.10. The functor Θ of Construction 7.3.9 can be described more informally
by the formula

ΘpMq “M ‘ Σn`1pM ^1ďn´1 1♥r´nsq.

However, this formula is a bit misleading: it really describes the composition of Θ with
the forgetful functor Syn1ďn´1 Ñ SynE . In order to regard Θ as a functor from the
8-category Syn1ďn´1 to itself, one needs to understand the derivation

d : 1ďn´1 Ñ 1ďn´1 ‘ Σn`11♥r´ns

which appears in Proposition 7.3.5 (the nontriviality of these derivations encode the
contrast between the homotopy-theoretic character of the 8-category SynE and the
purely algebraic character of the 8-category Syn1♥ » DpSyn♥

Eqě0).
In the special case where M is a dualizable object of Mod1ďn´1 , we can identify the

tensor product M ^1ďn´1 1♥r´ns with pπ0Mqr´ns (Corollary 7.3.4. In this case, we
obtain an equivalence of synthetic E-modules ΘpXq » X ‘ Σn`1pπ0Xqr´ns.

Remark 7.3.11. Let n be a positive integer and suppose we are given objects X,Y P
Syn1ďn´1 . The following data are equivalent:

piq Morphisms α : d˚Y Ñ d˚0X in the 8-category Syn1ďn´1‘Σn`11♥r´ns.

piiq Morphisms β : Y Ñ ΘpXq in the 8-category Syn1ďn´1 .

Moreover, a morphism α : d˚Y Ñ d˚0X is an equivalence if and only if the corresponding
morphism β : Y Ñ ΘpXq has the property that the composite map Y

β
ÝÑ ΘpXq φ

ÝÑ X
is an equivalence in Syn1ďn´1 . It follows that the 8-category Syn1ďn´1 ˆC Syn1ďn´1

appearing in the proof of Proposition 7.3.6 can be identified with the 8-category of
pairs pX, sq, where X is an object of Syn1ďn´1 and s : X Ñ ΘpXq is a section of the
map φ : ΘpXq Ñ X.

7.4 Lifting Associative Algebras

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Our goal is to apply the analysis of §7.3 to study the problem of lifting associative
algebra objects of Syn1ďn´1 to associative algebra objects of Syn1ďn , where n is a
positive integer.

Notation 7.4.1. Let n ą 0 and let A be an associative algebra object of Syn1ďn´1 .
We let LiftpAq denote the set π0pAlgpSyn1ďnq ˆAlgpSyn1ďn´1 q tAuq, which parametrizes
equivalence classes of objects A P AlgpSyn1ďnq equipped with an equivalence A »

A^1ďn 1ďn´1.
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Remark 7.4.2. Let n ą 0 and let A be an associative algebra object of Syn1ďn´1 .
Combining Proposition 7.3.6 with Remark 7.3.11, we obtain a canonical homotopy
equivalence

AlgpSyn1ďnq ˆAlgpSyn1ďn´1 q tAuq » MapAlgpSyn1ďn´1 qpA,ΘpAqq.

In particular, we can identify LiftpAq with the set of homotopy classes of sections of the
canonical map φA : ΘpAq Ñ A described in Construction 7.3.9 (taken in the 8-category
of associative algebra objects of Syn1ďn´1).

Our next goal is to obtain a homological description of the space LiftpAq.

Proposition 7.4.3. Let A be an associative algebra object of Syn1ďn´1 which is dualiz-
able as an object Syn1ďn´1. Then the map φA : ΘpAq Ñ A appearing in Construction
7.3.9 exhibits ΘpAq as a square-zero extension of A by the Σn`1pπ0Aqr´ns (which we
regard as an A-A bimodule object of the 8-category Syn1ďn´1).

Proof. Combine Theorem HA.7.4.1.26 with Remark 7.3.10.

Notation 7.4.4 (The Cotangent Complex). Let n ą 0 and let A be a dualizable
associative algebra object of Syn1ďn´1 . Set A0 “ π0A » A ^1ďn´1 1♥ (see Corollary
7.3.4). Let LA P ABModApSyn1ďn´1q denote the absolute cotangent complex of A
(regarded as an associative algebra object of the 8-category Syn1ďn´1), and define
LA0 P A0BModA0pSyn1♥q similarly, so that LA0 can be identified with the image of LA
under the extension of scalars functor M ÞÑM ^1ďn´1 1♥. Using Theorem HA.7.3.5.1
(together with Proposition 7.1.2), we see that the cotangent complex LA0 is a discrete
object of A0BModA0pSyn1♥q, which fits into a short exact sequence of bimodules

0 Ñ LA0 Ñ A0 bA0
m
ÝÑ A0 Ñ 0.

where m is the multiplication on A0.

Remark 7.4.5 (Classification of Lifts). Let n ą 0, let A be a dualizable associative
algebra object of Syn1ďn´1 , and set A0 “ π0A. Then the square-zero extension φ :
ΘpAq Ñ A of Proposition 7.4.3 is classified by an element

opAq P Extn`2
ABModApSyn1ďn´1 q

pLA, A0r´nsq

» Extn`2
A0BModA0 pSyn1♥ q

pLA0 , A0r´nsq

» Extn`2
A0BModA0 pSyn♥

Eq
pLA0 , A0r´nsq

(where the second isomorphism is supplied by Corollary 7.2.6). Using Remark 7.4.2, we
deduce:
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paq The obstruction opAq vanishes if and only if the set LiftpAq is nonempty.

pbq If the set LiftpAq is nonempty, then it forms a torsor for the abelian group

Extn`1
A0BModA0 pSyn♥

Eq
pLA0 , A0r´nsq.

Construction 7.4.6 (Obstructions in Hochschild Cohomology). Let n ą 0, let A be a
dualizable associative algebra object of Syn1ďn´1 , and set A0 “ π0A. Using the short
exact sequence 0 Ñ LA0 Ñ A0 bA0 Ñ A0 Ñ 0, we obtain a boundary map

e : Extn`1
A0BModA0 pSyn♥

Eq
pLA0 , A0r´nsq Ñ Extn`2

A0BModA0 pSyn♥
Eq
pA0, A0r´nsq

“ HCn`2,´npA0q

Suppose we are given a pair of lifts A,A1 P LiftpAq. Then the set LiftpAq is nonempty, and
is therefore a torsor for the abelian group Extn`1

A0BModA0 pSyn♥
Eq
pLA0 , A0r´nsq. It follows

that there is a unique element g P Extn`1
A0BModA0 pSyn♥

Eq
pLA0 , A0r´nsq which carries A to

A
1. We let δpA,A1q denote the element epgq P HCn`2,´npA0q.

In the special case where A is an Azumaya algebra object of Syn1ďn´1 , the Milnor
module A0 is an Azumaya algebra object of Syn♥

E . In this case, Corollary 7.2.8 supplies
a canonical isomorphism

HCn`2,´npA0q » pπ´2Kq bκ pm
n`2{mn`3q.

In this case, we will abuse notation by identifying δpA,A1q with its image under this
isomorphism.

Remark 7.4.7 (Functoriality). Let n ą 0, and suppose we are given dualizable algebra
objects A,B P AlgpSyn1ďn´1q together with lifts A,A1 P LiftpAq and B P LiftpBq. Then
we can regard A^1ďn B and A1^1ďn B as elements of LiftpA^1ďn´1 Bq. Then we have
an equality

δpA^1ďn B,A
1
^1ďn Bq “ θpδpA,A

1
qq P HCn`2,´npπ0Ab π0Bq,

where θ : HCn`2,´npπ0Aq Ñ HCn`2,´npπ0Abπ0Bq is the map on Hochschild cohomology
described in Remark 7.2.4.

In particular, if A and B are Azumaya algebras, then we have an equality δpA^1ďn

B,A
1
^1ďn Bq “ δpA,A

1
q in the abelian group pπ´2Kq bκ pm

n`2{mn`3q.
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7.5 Digression: Molecular Objects of Syn1ďn

Let E be a Lubin-Tate spectrum. In §6.2 we introduced the notion of a molecular
Milnor module M P τď0 SynE (see Definition 6.2.1). In this section, we consider a
generalization of this notion to the setting of n-truncated synthetic E-modules, for any
nonnegative integer n.

Definition 7.5.1. Let n be a nonnegative integer and let X P Syn1ďn . We will say that
X is molecular if it is dualizable (as an object of the symmetric monoidal 8-category
Syn1ďn) and the Milnor module π0X is molecular (in the sense of Definition 6.2.1).

Remark 7.5.2. Let X be a molecular object of Syn1ďn . Then X is n-truncated
(Proposition 7.3.3). It follows that the 1ďn-module structure on X is unique up to a
contractible space of choices; see Notation 7.3.2.

Warning 7.5.3. The terminology of Definition 7.5.1 is potentially ambiguous: if X
is a molecular object of Syn1ďn , then it is usually not molecular when regarded as an
object of Syn1ďm for m ě n.

Remark 7.5.4. Let X be an object of Syn1ď0 . Then X is molecular in the sense of
Definition 7.5.1 if and only if it discrete and molecular in the sense of Definition 6.2.1.

Proposition 7.5.5. Let n be a nonnegative integer and let X P Syn1ďn be molecu-
lar. Then there exists a molecular E-module M and an equivalence X » τďn SyrM s.
Moreover, the module M is unique up to equivalence.

Proof. Our assumption that X is molecular guarantees that we can choose a molecular
E-module M and an isomorphism of Milnor modules α0 : Sy♥rM s » π0X. Note that we
can identify α0 with an element of pπ0XqpMq “ π0pXpMqq, which we can identify with a
homotopy class of maps α : τďn SyrM s Ñ X in the 8-category τďn SynE » τďn Syn1ďn .
Since τďn SyrM s and X are dualizable objects of the 8-category Syn1ďn , Corollary
7.3.4 implies that α0 can be obtained from α by applying the extension of scalars
functor N ÞÑ N ^1ďn 1♥. It follows from Corollary 7.3.7 that α is an equivalence. This
proves the existence of M . For the uniqueness, it suffices to observe that a molecular
E-module M is determined, up to equivalence, by the Milnor module Sy♥rM s (Corollary
6.2.8).

Corollary 7.5.6. Let n be a positive integer and let X P Syn1ďn´1 be molecular. Then
there exists a tiny object X P Syn1ďn and an equivalence X » X ^1ďn 1ďn´1.

Proposition 7.5.7. Let n be a nonnegative integer and let X,Y P Syn1ďn. If X is
dualizable and Y is molecular, then X ^1ďn Y is molecular.
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Proof. It is clear that X^1ďn Y is a dualizable object of Syn1ďn . It will therefore suffice
to show that π0pX ^1ďn Y q » pπ0Xqb pπ0Y q is a molecular Milnor module. By virtue
of Theorem 6.6.6, there exists an equivalence of monoidal categories F : Syn♥

E »MpV q,
where V is a finite-dimensional vector space over κ. Observe that a Milnor module
M is molecular if and only if F pMq is a finitely generated module over the exterior
algebra H “

Ź˚
K˚
pV q. We now complete the proof by observing that if F pπ0Xq is

finitely generated H-module and F pπ0Y q is a finitely generated free H-module, then the
tensor product F pπ0Xq bK˚ F pπ0Y q » F ppπ0Xqb pπ0Y qq is also a finitely generated
free H-module.

7.6 Lifting Molecular Algebras

Let E be a Lubin-Tate spectrum, let m Ď π0E be the maximal ideal, and let κ
denote the residue field pπ0Eq{m. In this section, we specialize the deformation-theoretic
ideas of §7.4 to study the problem of lifting molecular algebras.

Proposition 7.6.1. Let n be a positive integer, let A be a molecular Azumaya algebra
object of Syn1ďn´1, and set A0 “ π0A. Then:

paq The set LiftpAq is nonempty.

pbq The boundary map

Extn`1
A0BModA0 pSyn♥

Eq
pLA0 , A0r´nsq

e
ÝÑ HCn`2,´npA0q

appearing in Construction 7.4.6 is an isomorphism. Consequently, we can regard
the set LiftpAq as a torsor for the abelian group

HCn`2,´npA0q » pπ´2Kq bκ pm
n`2{mn`3q.

Proof. Let C denote the abelian category A0BModA0pSyn♥
Eq. Combining the short exact

sequence 0 Ñ LA0 Ñ A0 b A0 Ñ A0 Ñ 0 appearing in Construction 7.4.6 with the
calculation

Ext˚CpA0 bA0, A0r´nsq » Ext˚Syn♥
E

p1♥, A0r´nsq,

we obtain a long exact sequence

Ext˚´1
Syn♥

E

p1♥, A0r´nsq Ñ Ext˚´1
C pLA0 , A0r´nsq Ñ HC˚,´npA0q Ñ Ext˚Syn♥

E

p1♥, A0r´nsq

Since A is molecular, the object A0r´ns P Syn♥
E is injective (Corollary 6.6.11), so the

boundary maps
Ext˚´1

C pLA0 , A0r´nsq Ñ HC˚,´npA0q
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are isomorphisms for ˚ ą 0. This proves pbq. To prove paq, it will suffice (by virtue of
Remark 7.4.5) to show that the Hochschild cohomology group HCn`3,´npA0q vanishes,
which is a special case of Corollary 7.2.8.

Corollary 7.6.2. Let n be a positive integer and suppose we are given Azumaya
algebras A,B P AlgpSyn1ďn´1q together with a lift B P LiftpBq. If A is molecular, then
the construction A ÞÑ A^1ďn B induces a bijection ρ : LiftpAq Ñ LiftpA^1ďn´1 Bq.

Proof. Note that A^1ďn´1 B is also molecular (Proposition 7.5.7). Using Proposition
7.6.1, we can regard LiftpAq and LiftpA ^1ďn´1 Bq as torsors for the abelian group
G “ K´2 bκ pm

n`2{mn`3q. It follows from Remark 7.4.7 that ρ is G-equivariant and
therefore bijective.

Remark 7.6.3 (Lifting Algebra Automorphisms). In the situation of Proposition 7.6.1,
Corollary 7.2.8 also guarantees the vanishing of the group

HCn`1,´npA0q » Extn
A0BModA0 pSyn♥

Eq
pLA0 , A0r´nsq.

It follows that every connected component of the space

AlgpSyn1ďnq ˆAlgpSyn1ďn´1 q tAu

is simply connected. In particular, for each A P LiftpAq, the canonical map π0 AutpAq Ñ
π0 AutpAq is surjective: here AutpAq denotes the subspace of MapAlgpSyn1ďn q

pA,Aq
spanned by the equivalences, and AutpAq is defined similarly.
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Chapter 8

The Calculation of BrpEq

Let E be a Lubin-Tate spectrum, which we regard as fixed throughout this section.
Let m Ď π0E be the maximal ideal and let K˚ denote the graded ring pπ˚Eq{mpπ˚Eq.
Our goal is to compute the Brauer group BrpEq, at least up to filtration.

Notation 8.0.4. Let A be a commutative algebra object of SynE . We let BrpAq denote
the Brauer group of the symmetric monoidal 8-category SynA “ ModApSynEq.

We will obtain information the Brauer group BrpEq by analyzing the tower of
symmetric monoidal 8-categories

Modloc
E

Sy
ÝÑ SynE Ñ ¨ ¨ ¨ Ñ Syn1ď2 Ñ Syn1ď1 Ñ Syn1ď0

π0
ÝÑ Syn♥

E .

Our principal results can be summarized as follows:

Theorem 8.0.5. p1q The restricted Yoneda embedding Sy : Modloc
E ãÑ SynE induces

an isomorphism of Brauer groups BrpEq Ñ BrpSynEq.

p2q The functor π0 : Syn1ď0 Ñ Syn♥
E induces an isomorphism of Brauer groups

Brp1ď0q Ñ BrpSyn♥
Eq “ BMpEq.

p3q The canonical maps SynE Ñ Syn1ďn induce an isomorphism of abelian groups
BrpSynEq Ñ lim

ÐÝ
Brp1ďnq.

p4q For each n ą 0, the extension of scalars functor

Syn1ďn Ñ Syn1ďn´1 M ÞÑM ^1ďn 1ďn´1

induces a homomorphism of Brauer groups Brp1ďnq Ñ Brp1ďn´1q which fits into
a short exact sequence

0 Ñ K´2 bκ pm
n`2{mn`3q Ñ Brp1ďnq Ñ Brp1ďn´1q Ñ 0.
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The remainder of this section is to devoted to the proof of Theorem 8.0.5. We will
establish each assertion in turn (see Propositions 8.1.1, 8.2.1, 8.3.1, and 8.4.1). The
most difficult part of the argument will be the proof of p4q: this will require the theory
of Hochschild cohomology developed in §7.

8.1 Comparison of Modloc
E with SynE

We begin by establishing the first assertion of Theorem 8.0.5, which we restate for
the reader’s convenience:

Proposition 8.1.1. The Yoneda embedding Sy : Modloc
E ãÑ SynE induces an isomor-

phism of Brauer groups BrpEq “ BrpModloc
E q Ñ BrpSynEq.

The proof of Proposition 8.0.5 will require some preliminary observations.

Lemma 8.1.2. Let X and Y be nonzero Milnor modules. Then the tensor product
X b Y is nonzero.

Proof. By virtue of Proposition 6.6.3, there exists a conservative monoidal functor
Syn♥

E Ñ Modgr
K˚

. We are therefore reduced to the observation that if M and N are
nonzero objects of Modgr

K˚
, then the tensor product M bK˚ N is also nonzero.

Lemma 8.1.3. piq Let X and Y be nonzero synthetic E-modules. Then the smash
product X ^ Y is also nonzero.

piiq Let n ě 0 and let X and Y be nonzero objects of Syn1ďn . Then the relative smash
product X ^1ďn Y is nonzero.

Remark 8.1.4. The proof of Proposition 8.1.1 will use only part piq of Lemma 8.1.3.
However, part piiq will be useful later in this section.

Proof of Lemma 8.1.3. We will prove piq; the proof of piiq is similar. Let m be the
smallest positive integer such that πmX is nonzero. Since the 8-category SynE is
prestable, we can write X “ ΣmX0, where π0X0 ‰ 0. We then have X ^ Y »

ΣmpX0 ^ Y q. Consequently, to show that X ^ Y is nonzero, it will suffice to show
that X0 ^ Y is nonzero. We may therefore replace X by X0 and thereby reduce to the
case where π0X ‰ 0. Similarly, we may assume that π0Y ‰ 0. In this case, we have
π0pX ^ Y q » π0X b π0Y ‰ 0 by virtue of Lemma 8.1.2.

Lemma 8.1.5. piq An object X P SynE is full (in the sense of Definition 2.1.2) if
and only if it is nonzero.

piiq For n ě 0, an object X P Syn1ďn is full if and only if it is nonzero.
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Proof. The “only if” direction is obvious. Conversely, suppose that X ‰ 0. Let α : Y Ñ
Z be a morphism in SynE and suppose that the induced map αX : X ^ Y Ñ X ^ Z
is an equivalence. We then have X ^ cofibpαq » cofibpαXq » 0. Since X is nonzero,
Lemma 8.1.3 guarantees that cofibpαq » 0. Because the 8-category SynE is prestable,
it follows that α is an equivalence.

Lemma 8.1.6. Let X be a synthetic E-module. The following conditions are equivalent:

p1q The synthetic E-module X is dualizable (as an object of the symmetric monoidal
8-category SynE).

p2q There exists a perfect E-module M and an equivalence X » SyrM s.

Proof. The implication p2q ñ p1q is immediate (note that the functor M ÞÑ SyrM s
is symmetric monoidal by Variant 4.4.11, and therefore carries dualizable objects to
dualizable objects). Conversely, suppose that p1q is satisfied. We will show that
X » SyrM s for some M P Modloc

E . Applying the same argument to the dual X_,
we can write X_ “ SyrN s for some N P Modloc

E . Using the fact that the functor
Sy : Modloc

E Ñ SynE is fully faithful (Proposition 4.2.5) and symmetric monoidal
(Variant 4.4.11), we conclude that M and N are mutually dual objects of Modloc

E , so
that M is perfect (Proposition 2.9.4).

To show that X belongs to the essential image of the functor Sy, it will suffice to
verify that it satisfies condition p˚q of Proposition 4.2.5. That is, we must show that for
every molecular E-module M , the canonical map

MapSynE pSyrΣM s, Xq Ñ MapSynE pΣ SyrM s, Xq

is a homotopy equivalence. Equivalently, we must show that the canonical map

MapSynE pSyrΣM s ^X_,1q Ñ MapSynE ppΣ SyrM sq ^X_,1q

is a homotopy equivalence. Let F : SynE Ñ Modloc
E be a left adjoint to the functor Sy;

we claim that canonical map F pΣ SyrM s ^X_q Ñ F pSyrΣM s ^X_q is an equivalence.
This is clear, since the functor F is nonunital symmetric monoidal (see Corollary 4.4.6)
and induces an equivalence F pΣ SyrM sq Ñ F pSyrΣM sq.

Proof of Proposition 8.1.1. Using Lemma 8.1.5, we see that the restricted Yoneda em-
bedding Sy : Modloc

E ãÑ SynE carries full objects of Modloc
E to full objects of SynE , and

therefore induces a group homomorphism θ : BrpEq “ BrpModloc
E q Ñ BrpSynEq (see

Proposition 2.4.1). We first claim that θ is injective. Let A be an Azumaya algebra
object of Modloc

E , and suppose that θprAsq “ rSyrAss vanishes in BrpSynEq. Then there
exists an equivalence α : SyrAs » EndpXq in AlgpSynEq, where X is a nonzero dualiz-
able object of SynE . Using Lemma 8.1.6, we can choose an equivalence X » SyrM s,
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where M is a perfect E-module (and thus a dualizable object of Modloc
E ). Since the

functor Sy is fully faithful (Proposition 4.2.5) and symmetric monoidal (Variant 4.4.11),
we can lift α to an equivalence α : A » EndpMq in AlgpModloc

E q, so that rAs vanishes in
BrpEq “ BrpModloc

E q.
We now complete the proof by showing that θ is surjective. Let B be an Azumaya

algebra object of SynE . Using Lemma 8.1.6, we deduce that there is an equivalence
β : B » SyrAs for some dualizable object A P Modloc

E . Because the functor Sy
is symmetric monoidal and fully faithful, there exists an essentially unique algebra
structure on A for which β can be promoted to an equivalence of algebras. The canonical
map AbEAop Ñ EndpAq becomes an equivalence after applying the conservative functor
Sy : Modloc

E ãÑ SynE , and is therefore an equivalence. Applying Corollary 2.2.3, we
deduce that A is an Azumaya algebra, so that rBs “ rSyrAss “ θprAsq belongs to the
image of θ.

8.2 Comparison of Syn1♥ with Syn♥E
We now prove the second part of Theorem 8.0.5, which we formulate as follows:

Proposition 8.2.1. The inclusion functor ι : Syn♥
E ãÑ Syn1♥ induces an isomorphism

of Brauer groups BMpEq “ BrpSyn♥
Eq Ñ Brp1♥q.

Proof. It follows from Proposition 7.1.2 that the functor ι is symmetric monoidal, and
from Lemma 8.1.5 that ι carries full objects of Syn♥

E to full objects of Syn1♥ . Applying
Proposition 2.4.1, we deduce that ι induces a group homomorphism ρ : BMpEq “
BrpSyn♥

Eq Ñ Brp1♥q. Note that if A is an Azumaya algebra object of Syn♥
E and ρprAsq

vanishes in Brp1♥q, then we can choose an equivalence A » EndpMq for some nonzero
dualizable object M P Syn1♥ . The dualizability of M implies that M is discrete
(Proposition 7.3.3), so that rAs vanishes in the group BMpEq. This shows that ρ is
injective. To prove surjectivity, it suffices to observe that every Azumaya algebra
A P AlgpSyn1♥q is discrete (Proposition 7.3.3), and can therefore also be regarded as
an Azumaya algebra object of the category Syn♥

E of Milnor modules (this is immediate
from the criterion of Corollary 2.2.3).

Remark 8.2.2. Let n be a nonnegative integer. Then the 8-category τďn SynE of
n-truncated synthetic E-modules admits an essentially unique symmetric monoidal
structure for which the truncation functor τďn : SynE Ñ τďn SynE is symmetric
monoidal; concretely, the tensor product on τďn SynE is given by the construction

pX,Y q ÞÑ τďnpX ^ Y q.
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It is not difficult to show (by a variant on the proof of Proposition 8.2.1) that the
truncation functor τďn induces an isomorphism of Brauer groups

Brp1ďnq “ BrpSyn1ďnq Ñ Brpτďn SynEq

(in the case n “ 0, this is the inverse of the isomorphism appearing in Proposition 8.2.1).
The essential observation is that every Azumaya algebra object of Syn1ďn is dualizable,
and therefore n-truncated (Proposition 7.3.3). Since we do not need this result, we leave
further details to the reader.

8.3 Passage to the Inverse Limit

It follows from Lemma 8.1.5 that the extension-of-scalars functors

SynE Ñ Syn1ďn Syn1ďm Ñ Syn1ďn

X ÞÑ X ^ 1ďn X ÞÑ X ^1ďm 1ďn

carry full objects to full objects. Applying Proposition 2.4.1, we obtain a diagram of
Brauer groups

BrpSynEq Ñ ¨ ¨ ¨ Ñ Brp1ď3q Ñ Brp1ď2q Ñ Brp1ď1q Ñ Brp1ď0q.

Our goal in this section is to prove the third part of Theorem 8.0.5, which we restate as
follows:

Proposition 8.3.1. Let θ : BrpSynEq Ñ lim
ÐÝ

Brp1ďnq be the group homomorphism
determined by the diagram above. Then θ is an isomorphism of abelian groups.

The proof of Proposition 8.3.1 will require some preliminaries.

Lemma 8.3.2. Let n be a nonnegative integer and let L be an invertible object of
Syn1ďn. Then L is equivalent either to 1ďn “ τďn SyrEs or to τďn SyrΣEs.

Proof. Note that any invertible object of Syn1ďn is dualizable, and therefore n-truncated
(Proposition 7.3.3). We proceed by induction on n, beginning with the case n “ 0. If
L P Syn1ď0 is invertible, then L is invertible when regarded as a Milnor module. Using
Theorem 6.6.6, we can choose an equivalence of monoidal categories Syn♥

E »MpV q,
where V is a finite-dimensional vector space over the residue field κ “ pπ0Eq{m. We
observe that MpV q is equipped with a monoidal forgetful functor MpV q Ñ Modgr

K˚
,

and that every invertible object of Modgr
K˚

is isomorphic either to the unit object K˚ or
to its shift K˚r1s. Moreover, since K˚ is concentrated in even degrees, every action of
the exterior algebra

Ź˚
K˚
pV q on K˚ or K˚r1s is automatically trivial on V . It follows
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that every invertible object ofMpV q is isomorphic either to the unit object K˚ or K˚r1s,
which proves Lemma 8.3.2 in the case n “ 0.

We now carry out the inductive step. Suppose that n ą 0 and that L is an invertible
object of Syn1ďn . Our inductive hypothesis guarantees that L^1ďn 1ďn´1 is equivalent
either to τďn´1 SyrEs or to τďn´1 SyrΣEs. Without loss of generality, we may assume
that L0 “ L^1ďn 1ďn´1 is equivalent to 1ďn´1. Let Θ : Syn1ďn´1 Ñ Syn1ďn´1 be the
functor described in Construction 7.3.9. Using Proposition 7.3.6 and Remark 7.3.11,
we can identify lifts of L0 to an object of Syn1ďn with sections of the canonical map
φ : ΘpL0q Ñ L0 in the 8-category Syn1ďn´1 . Since the set of such lifts is nonempty, the
map φ admits a section; it therefore exhibits ΘpL0q as a direct sum L0 ‘ Σn`11♥r´ns.
We can therefore identify the set of equivalence classes of lifts of L0 with the group

Extn`1
Syn1ďn´1

p1ďn´1,1♥r´nsq » Extn`1
Syn♥

E

p1♥,1♥r´nsq.

We now observe that this group vanishes (see Proposition 7.2.7).

Lemma 8.3.3. Let n be a positive integer, let A be a molecular Azumaya algebra object
of the symmetric monoidal 8-category Syn1ďn´1, and let x P Brp1ďnq be an element
whose image in Brp1ďn´1q coincides with rAs. Then x “ rAs for some molecular
Azumaya algebra object A of Syn1ďn satisfying A » A^1ďn 1ďn´1.

Proof. Write x “ rBs for some Azumaya algebra B P Syn1ďn , and set B “ B^1ďn1ďn´1.
Then rAs “ rBs in Brp1ďn´1q. It follows that there exists an equivalence of algebras

A^1ďn´1 Bop » EndpMq

for some nonzero dualizable object M P Syn1ďn´1 . Let N be an atomic E-module.
Replacing B by B ^ SyrEndEpNqs, we can arrange that M is molecular. In this case,
we can apply Corollary 7.5.6 to lift M to a molecular object M P Syn1ďn . Then
EndpMq can be regarded as an element of the set LiftpA ^1ďn´1 Bopq (see Notation
7.4.1). Invoking Corollary 7.6.2, we deduce that there exists an equivalence

EndpMq » A^1ďn B
op

for some A P LiftpAq. Then A is an Azumaya algebra satisfying rAs “ x, as desired.

Proof of Proposition 8.3.1. We first show that the homomorphism θ : BrpSynEq Ñ
lim
ÐÝ

Brp1ďnq is injective. Suppose that A is an Azumaya algebra object of SynE and that
θprAsq “ 0 in lim

ÐÝ
Brp1ďnq; we wish to show that rAs “ 0. For each n ě 0, we can choose

a full dualizable object Mn P Syn1ďn and an equivalence A^ 1ďn » EndpMnq (where
the endomorphism object is formed in the symmetric monoidal 8-category Syn1ďn).
We therefore have equivalences

βn : EndpMnq » EndpMn`1 ^1ďn`1 1ďnq
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in the 8-categories AlgpSyn1ďnq. Using Corollary 2.1.5, we see that each βn is induced
by an equivalence

Mn » pMn`1 ^1ďn`1 1ďnq ^1ďn Ln

for some invertible object Ln P Syn1ďn . Using Lemma 8.3.2, we can assume Ln “ 1ďn^
SyrΣknEs for some integers kn P t0, 1u. Replacing each Mn by Mn ^ SyrΣk0`¨¨¨`kn´1Es,
we can arrange that each Ln is trivial, so that each βn is induces by an equivalence
Mn » Mn`1 ^1ďn`1 1ďn. In this case, we can regard M “ tMnuně0 as a nonzero
dualizable object of the 8-category SynE » lim

ÐÝ
τďn SynE . We then have an equivalence

A » EndpMq, so that rAs “ 0 in BrpSynEq.
We now prove that θ is surjective. Suppose we are given an element x of lim

ÐÝ
Brp1ďnq,

which we can identify with a compatible sequence of elements txn P Brp1ďnquně0. Write
x0 “ rA0s for some Azumaya algebra A0 P Syn1ď0 . Without loss of generality, we may
assume that A0 is molecular. Invoking Lemma 8.3.3 repeatedly, we can choose Azumaya
algebras An P AlgpSyn1ďnq satisfying

rAns “ xn An´1 » An ^1ďn 1ďn´1.

We can therefore identify each An´1 with the truncation τďn´1An (Corollary 7.3.4),
so that A “ tAnuně0 can be regarded as an algebra object of the 8-category SynE »
lim
ÐÝ

τďn SynE . It follows immediately that A is an Azumaya algebra satisfying θprAsq “ x
in lim
ÐÝ

Brp1ďnq.

8.4 Comparison of Syn1ďn with Syn1ďn´1

Let us now fix an integer n ą 0. We saw in §8.3 that the extension-of-scalars functor

Syn1ďn Ñ Syn1ďn´1 M ÞÑM ^1ďn 1ďn´1

induces a homomorphism of Brauer groups ρ : Brp1ďnq Ñ Brp1ďn´1q. The final
assertion of Theorem 8.0.5 is a consequence of the following more precise result:

Proposition 8.4.1. The homomorphism ρ : Brp1ďnq Ñ Brp1ďn´1q is surjective. More-
over, there is a unique isomorphism ξ : kerpρq » K´2 bκ pm

n`2{mn`3q which satisfies
the following condition:

p˚q Let B be an Azumaya algebra object of Syn1ďn´1 and suppose we are given lifts
B,B

1
P LiftpBq (see Notation 7.4.1). Then ξprBs ´ rB

1
sq “ δpB,B

1
q, where δ is

defined as in Construction 7.4.6.

Proof. We first show that ρ is surjective. Fix an element x P Brp1ďn´1q; we wish to
show that x belongs to the image of ρ. Write x “ rAs for some Azumaya algebra A in
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Syn1ďn´1 . Let N be an atomic E-module. Replacing A by A^ SyrEndEpNqs, we can
arrange that A is molecular. In this case, Proposition 7.6.1 implies that there exists a
lift A P LiftpAq. Then A is an Azumaya algebra object of Syn1ďn and x “ rAs “ ρprAsq.

We will carry out the construction of ξ in several steps. Let us first fix a molecular
Azumaya algebra A in Syn1ďn´1 satisfying rAs “ 0 in Brp1ďn´1q (this can be achieved
by setting A “ SyrEndEpNqs ^ 1ďn´1, where N is an atomic E-module as above). We
now argue as follows:

p1q Every element of kerpρq can be written as rAs, for some A P LiftpAq. This is a
special case of Lemma 8.3.3.

p2q If A,A1 P LiftpAq are elements satisfying rAs “ rA1s in Brp1ďnq, then A “ A
1 (as

element of LiftpAq). To prove this, note that the equality rAs “ rA1s guarantees
the existence of an equivalence A1^1ďnA

op
» EndpMq for some nonzero dualizable

object M P Syn1ďn . Set M “M ^1ďn 1ďn´1, so that we have equivalences

EndpMq » Ab1ďn´1 Aop » EndpAq

in the 8-category AlgpSyn1ďn´1q. Applying Corollary 2.1.5, we deduce that there
exists an invertible object L P Syn1ďn´1 satisfying A » L^1ďn´1M . Using Lemma
8.3.2, we can lift L to an invertible object L P Syn1ďn . Replacing M by L^1ďnM ,
we can arrange that there exists an equivalence M » A in Syn1ďn´1 . Since A
is molecular, this guarantees the existence of an equivalence M » A in Syn1ďn
(Corollary 7.5.6). Because A is an Azumaya algebra, we obtain an equivalence

α : A1 ^1ďn A
op
» EndpMq » EndpAq » Ab1ďn A

op

in the 8-category AlgpSyn1ďnq. Let α denote the image of α in AlgpSyn1ďn´1q,
which we regard as an automorphism of EndpAq. Using Remark 7.6.3, we can lift
α to an automorphism α1 of EndpAq in the 8-category AlgpSyn1ďnq. Replacing
α by α1´1 ˝ α, we can reduce to the case where α is homotopic to the identity.
It then follows that A1 ^1ďn A

op and Ab1ďn A
op represent the same element of

LiftpA^1ďn´1 Aopq. Applying Corollary 7.6.2, we deduce that A and A1 represent
the same element of LiftpAq, as desired.

p3q It follows from p1q and p2q that the construction A ÞÑ rAs induces a bijection of
sets b : LiftpAq Ñ kerpρq. Using Proposition 7.6.1, we can regard LiftpAq as a
torsor for the group G “ K´2 bκ pm

n`2{mn`3q. It follows that there is a unique
bijection ξA : kerpρq Ñ G such that ξAp0q “ 0 and ξA ˝ b is a map of G-torsors.
Concretely, ξA is given by the formula ξAprAsq “ δpA,A0q, where δ is defined as
in Construction 7.4.6 and A0 denotes the unique element of LiftpAq satisfying
rA0s “ 0 P Brp1ďnq.
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p4q We now claim that the bijection ξA : kerpρq Ñ G does not depend on the choice of
A. To prove this, suppose that we are given some other molecular Azumaya algebra
B of Syn1ďn´1 satisfying rBs “ 0 P Brp1ďn´1q; we will show that ξApxq “ ξBpxq
for each x P kerpρq. Using p1q, we can choose lifts

A,A0 P LiftpAq B,B0 P LiftpBq

satisfying rAs “ rBs “ x and rA0s “ rB0s “ 0 in Brp1ďnq. Then

rA^1ďn B0s “ x “ rA0 ^1ďn Bs,

so p2q guarantees that A^1ďn B0 and A0 ^1ďn B represent the same element of
LiftpA^1ďn´1 Bq. Using Corollary 7.6.2, we compute

ξApxq “ δpA,A0q

“ δpA^1ďn B0, A0 ^1ďn B0q

“ δpA0 ^1ďn B,A0 ^1ďn B0q

“ δpB,B0q

“ ξBpxq.

p5q It follows from p4q that there exists a unique bijection ξ : kerpρq Ñ G such that
ξ “ ξA for every molecular Azumaya algebra A of Syn1ďn´1 satisfying rAs “ 0. We
claim that ξ is a group homomorphism. Choose elements x, y P Brp1ďnq satisfying
ρpxq “ ρpyq “ 0; we wish to show that ξpx` yq “ ξpxq ` ξpyq in Brp1ďnq. Choose
Azumaya algebras A,B P AlgpSyn1ďnq such that x “ rAs and y “ rBs. Set
A “ A ^1ďn 1ďn´1 and B “ B ^1ďn 1ďn´1. Without loss of generality, we can
assume that A and B are molecular. Using p1q, we can choose lifts A0 P LiftpAq
and B0 P LiftpBq satisfying rA0s “ rB0s “ 0 P Brp1ďnq. Set C “ A ^1ďn´1 B.
Using Corollary 7.6.2, we compute

ξpx` yq “ ξprA^1ďn Bsq

“ ξCprA^1ďn Bs

“ δpA^1ďn B,A0 ^1ďn B0q

“ δpA^1ďn B,A^1ďn B0q ` δpA^1ďn B0, A0 ^1ďn B0q

“ δpA,A0q ` δpB,B0q

“ ξAprAsq ` ξBprBsq

“ ξprAsq ` ξprBsq

“ ξpxq ` ξpyq.
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p6q We now show that the homomorphism ξ satisfies condition p˚q. Let B be an
arbitrary Azumaya algebra in Syn1ďn´1 , and suppose that we are given lifts
B,B1 P LiftpBq. We wish to show that ξprBs ´ rB1sq “ δpB,B

1
q in the abelian

group G. To prove this, choose a molecular Azumaya algebra in Syn1ďn´1 such
that rCs “ ´rBs in Brp1ďn´1q. Using Proposition 7.6.1, we can lift C to an
Azumaya algebra C in Syn1ďn . Set A “ B ^1ďn´1 C, so that A is a molecular
Azumaya algebra whose Brauer class rAs P Brp1ďn´1q vanishes. Using p1q, we can
lift A to an Azumaya algebra A in Syn1ďn satisfying rAs “ 0 P Brp1ďnq. Using
p5q and Corollary 7.6.2, we compute

ξprB
1
s ´ rBsq “ ξprB

1
^1ďn Csq ´ ξprB ^1ďn Csq

“ ξAprB
1
^1ďn Csq ´ ξAprB ^1ďn Cq

“ δpB
1
^1ďn C,Aq ´ δpB ^1ďn C,Aq

“ δpB
1
^1ďn C,B ^1ďn Cq

“ δpB
1
, Bq.

p7q We now complete the proof by showing that the homomorphism ξ is unique.
Suppose that ξ1 : kerpρq Ñ G is some other group homomorphism satisfying
condition p˚q. We will show that ξpxq “ ξ1pxq for each x P kerpρq. To prove
this, write x “ rAs for some molecular Azumaya algebra A in Syn1ďn . Set
A “ A^1ďn 1ďn´1. Using p1q, we can choose A0 P LiftpAq such that rA0s “ 0 P
Brp1ďnq. We then compute

ξpxq “ ξprAsq ´ ξprA0sq

“ δpA,A0q

“ ξ1prAsq ´ ξ1prA0sq

“ ξ1pxq.
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Chapter 9

Subgroups of BrpEq

Let E be a Lubin-Tate spectrum and let P be some property of E-modules which
satisfies the following requirement:

p˚q If M and N are E-modules having the property P , then the tensor product
M bE N also has the property P . Moreover, the Lubin-Tate spectrum E has the
property P .

In this case, we let BrP pEq denote the subset of BrpEq spanned by those Brauer
classes which can be represented by an Azumaya algebra A having the property P . It
follows immediately from p˚q that BrP pEq is a subgroup of BrpEq. In this section, we
will study subgroups

Br5pEq Ď BrfrpEq Ď BrfullpEq Ď BrpEq

which can be defined by this procedure:

• The subgroup Br5pEq consists of those element of BrpEq which have the form rAs,
where A is an Azumaya algebra which is flat as an E-module: that is, equivalent
to a sum of (finitely many) copies of E.

• The subgroup BrfrpEq consists of those elements of BrpEq which have the form
rAs, where A is an Azumaya algebra which is free in the sense of Definition 6.3.4:
that is, equivalent to a sum of copies of E and its suspension ΣE.

• The subgroup BrfullpEq consists of those elements of BrpEq which have the form
rAs, where A is an Azumaya algebra which is full (in the sense of Definition
2.1.2)) when regarded as an object of the 8-category ModE (for a more concrete
characterization, see Proposition 9.2.2).
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Remark 9.0.2. Let P be as above, and let C denote the full subcategory of ModE
spanned by those E-modules having the property P . Condition p˚q is equivalent to the
requirement that C is a symmetric monoidal subcategory of ModE . Roughly speaking,
we can think of the subgroup BrP pEq Ď BrpEq defined above as a Brauer group of the
8-category C. Beware, however, that C might not fit the general paradigm of §2 (in the
examples of interest to us, the 8-category C does not admit geometric realizations of
simplicial objects).

Warning 9.0.3. Let P be as above, and let x be an element of BrP pEq. The condition
that x belongs to BrP pEq guarantees that there exists some Azumaya algebra A
representing x which satisfies the property P . However, it does not guarantee that every
Azumaya algebra representing x has the property P (in the examples of interest to us,
this stronger property is never satisfied).

9.1 The Subgroup Brfr
pEq

Let E be a Lubin-Tate spectrum with maximal ideal m and residue field κ. Our first
goal is to describe the group BrfrpEq Ď BrpEq of Morita equivalence classes of Azumaya
algebras A which are free over E. Our main result can be stated as follows:

Theorem 9.1.1. There is a unique isomorphism of abelian groups u : BrfrpEq Ñ Brpκq
with the following property: if A is an Azumaya algebra over E which is free as an
E-module, then uprAsq “ rpπ0Aq{mpπ0Aqs.

To prove Theorem 9.1.1, it will be convenient to compare both BrfrpEq and Brpκq
with an auxiliary object: the Brauer group of the connective cover τě0E, in the sense of
Definition 2.7.1.

Proposition 9.1.2. The tautological map of E8-rings τě0E Ñ κ induces an isomor-
phism of Brauer groups Brpτě0Eq Ñ Brpκq.

Proof. Combine Propositions 2.7.4 and 2.6.4 (note that π0E is a complete local Noethe-
rian ring, and therefore Henselian).

Let L : ModE Ñ Modloc
E be a left adjoint to the inclusion functor. Note that the

construction
M ÞÑ LpE bτě0E Mq

determines a symmetric monoidal functor Modcτě0E Ñ Modloc
E , which carries full du-

alizable objects to full dualizable objects. Applying Proposition 2.4.1, we obtain a
homomorphism of Brauer groups γ : Brpτě0Eq Ñ BrpModEq.
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Proposition 9.1.3. The image of γ : Brpτě0Eq Ñ BrpEq is the subgroup BrfrpEq Ď
BrpEq.

Proof. Unwinding the definitions, we see that an element x P BrpEq belongs to the
image of γ if and only if x “ rE bτě0E A0s for some Azumaya algebra object A0 of
the symmetric monoidal 8-category Modcτě0E . In this case, A0 is a free τě0E-module
of finite rank, so that A “ E bτě0E A0 is a free E-module of finite rank. Conversely,
suppose that x “ rAs, where A is an Azumaya algebra which is free of finite rank over
E. Then A » E bτě0E A0, where A0 is the connective cover of A. To show that x
belongs to the image of ξ, it will suffice to show that A0 is an Azumaya algebra object
of Modcτě0E . By virtue of Corollary 2.2.3, it will suffice to show that the multiplication
on A0 induces an equivalence e : A0 bτě0E A

op
0 Ñ Endτě0EpA0q. Note that the domain

and codomain of e are free modules of finite rank over τě0E. Consequently, to show
that e is an equivalence, it will suffice to show that e becomes an equivalence after
extending scalars along the map τě0E Ñ E. This follows from our assumption that A
is Azumaya.

Our next goal is to show that the map γ of Proposition 9.1.3 is injective. This is a
consequence of the following algebraic assertion:

Lemma 9.1.4. The canonical isomorphism κ » EndSyn♥
E
p1♥q determines a fully faithful

symmetric monoidal functor

F : Vectκ Ñ Syn♥
E F pV q “ V bκ 1♥

which induces a monomorphism of Brauer groups ι0 : Brpκq Ñ BrpSyn♥
Eq “ BMpEq.

Proof. The first assertion follows immediately from Proposition 6.3.10 and the well-
definedness of ι0 follows from Proposition 2.4.1. To show that ι0 is injective, it will
suffice to show that if M is a dualizable Milnor module and EndpMq belongs to the
essential image of F , then either M or M r1s belongs to the essential image of F . To
prove this, choose a Modgr

K˚
-linear equivalence of monoidal categories G : Syn♥

E »MpV q
(Theorem 6.6.6), for some finite-dimensional vector space V over κ. Then we can identify
GpMq with a graded module over the exterior algebra

Ź˚
K˚
pV q which is of finite rank

over K˚. Our assumption that EndpMq belongs to the image of F guarantees that
GpEndpMqq “ GpMq bK˚ GpMq

_ is concentrated in even degrees. Replacing M by
M r1s if necessary, we can assume that GpMq is also concentrated in even degrees. It
follows that the action of V on GpMq must be trivial, so that GpMq is a direct sum of
copies of K˚ “ Gp1♥q and therefore M belongs to the essential image of F .
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Proposition 9.1.5. The homomorphism γ of Proposition 9.1.2 fits into a commutative
diagram of Brauer groups

Brpτě0Eq
γ //

��

BrpEq

��
Brpκq ι0 // BMpEq

where ι0 is the monomorphism of Lemma 9.1.4 and the left vertical map is the isomor-
phism of Proposition 9.1.4.

Proof. Let A be an Azumaya algebra object of the symmetric monoidal 8-category
Modcτě0E , and let A0 “ κbτě0E A be the induced Azumaya algebra over κ. To prove
Proposition 9.1.5, it will suffice to show that F pA0q and Sy♥rEbτě0E As are isomorphic
(as Azumaya algebra objects of Syn♥

E), where F is the symmetric monoidal functor
of Lemma 9.1.4. This follows from the commutativity of the diagram of symmetric
monoidal 8-categories σ :

Modfr
τě0E

//

��

ModE

��
Vectκ F // Syn♥

E ,

where Modfr
τě0E denotes the full subcategory of Modcτě0E spanned by the free modules

over τě0E (that is, those modules which are direct sums of copies of τě0E). The
commutativity of σ is implicit in the construction of F (see §6.3).

Corollary 9.1.6. The map γ : Brpτě0Eq Ñ BrfrpEq is an isomorphism.

Proof of Theorem 9.1.1. Proposition 9.1.2 and Corollary 9.1.6 supply isomorphisms

Brpκq Ð Brpτě0Eq
γ
ÝÑ BrfrpEq.

Note that if A is an Azumaya algebra over E which is free as an E-module, then this
isomorphism carries the element rAs P BrfrpEq to the class of the Azumaya algebra
κbτě0E τě0A » pπ0Aq{mpπ0Aq.

9.2 The Subgroup Brfull
pEq

Let E be a Lubin-Tate spectrum. In this paper, we have defined the Brauer group
BrpEq to be the Brauer group of the 8-category Modloc

E of Kpnq-local E-modules, where
n is the height of E. One can also consider the 8-category ModE of all E-modules.
However, this gives rise to a smaller Brauer group:
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Proposition 9.2.1. Let L : ModE Ñ Modloc
E be a left adjoint to the inclusion functor.

Then L induces a group homomorphism α : BrpModEq Ñ BrpModloc
E q “ BrpEq. More-

over, α induces an isomorphism from BrpModEq to the subgroup BrfullpEq consisting of
those elements of BrpEq which have the form rAs, where A is an Azumaya algebra over
E which is full when regarded as an object of ModE.

Proof. To show that α is well-defined, it will suffice to show that the functor L carries
full dualizable objects of ModE to full objects of Modloc

E (Proposition 2.4.1). Note that if
M P ModE is dualizable, then M already belongs to Modloc

E , so we have an equivalence
LM »M (Proposition 2.9.4). If M is full as an object of ModE , then it is necessarily
nonzero, so that LM »M is a full object of Modloc

E by virtue of Proposition 2.9.6. This
proves that α is well-defined.

Note that every Azumaya algebra object A of ModE is also an Azumaya algebra
object of Modloc

E , and the converse holds if and only if A is full as an object of ModE .
It follows that the image of α is the subgroup BrfullpEq Ď BrpEq.

We now complete the proof by showing that α is injective. Suppose that A is an
Azumaya algebra object of ModE and that αprAsq vanishes in BrpModloc

E q; we wish
to show that rAs vanishes in BrpModEq. The vanishing of αprAsq guarantees that we
can identify A with EndpMq for some dualizable object M P Modloc

E . Proposition
2.9.4 guarantees that M is also dualizable as an object of ModE . Moreover, since
A “M bE M

_ is a full object of ModE , the module M must also be full as an object
of ModE . Applying Corollary 2.1.4, we deduce that rAs vanishes in BrpModEq.

The following result gives a concrete criterion for testing the fullness of dualizable
objects of ModE :

Proposition 9.2.2. Let M be a perfect E-module. The following conditions are equiv-
alent:

paq The module M is full (as an object of the 8-category ModE).

pbq For every nonzero element x P π0E, multiplication by x induces a nonzero map
π˚M

x
ÝÑ π˚M .

The proof of Proposition 9.2.2 will require some preliminaries.

Lemma 9.2.3. Let M be a nonzero E-module. Then there exists a prime ideal p Ď π0E
and a regular system of parameters x1, . . . , xk for the local ring pπ0Eqp for which the
tensor product M bE A is nonzero, where A “ b1ďiďk cofibpxi : Ep Ñ Epq.

Proof. Let p be minimal among those prime ideals of π0E for which the localization Mp

is nonzero (such a prime ideal must exist by virtue of our assumption that M is nonzero).
Choose elements x1, . . . , xk P p which form a regular system of parameters for the local
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ring pπ0Eqp. For 0 ď j ď k, let Apiq denote the tensor product
Â

1ďiďj cofibpxi : Ep Ñ

Epq (formed in the 8-category of modules over the localization Ep), so that Ap0q “ Ep

by convention. We will prove the following assertion 0 ď i ď k:

p˚iq The tensor product Apiq bE M is nonzero.

Note that p˚0q follows from our assumption that the localization Mp is nonzero, and
p˚kq implies Lemma 9.2.3. We will complete the proof by showing that p˚i´1q implies
p˚iq. Note that we have a cofiber sequence

Api´ 1q bE M
xi
ÝÑ Api´ 1q bE M Ñ Apiq bE M.

Consequently, if p˚iq is not satisfied, then multiplication by xi induces an equivalence
from Api ´ 1q bE M to itself, so that the tautological map e : Api ´ 1q bE M Ñ

Api´ 1q bE M rx´1
i s is an equivalence. Assumption p˚i´1q guarantees that the domain

of e is nonzero. It follows that the codomain of e is also nonzero, so that the localization
Mprx

´1
i s is nonzero. It follows that there exists a prime ideal q Ď p which does not

contain xi for which the localization Mq is nonzero, contradicting our assumption that
p is minimal.

Lemma 9.2.4. Let M be an E-module spectrum. The following conditions are equiva-
lent:

p1q The module M is a full object of ModE: that is, the functor N ÞÑ M bE N is
conservative.

p2q For every nonzero E-module N , the tensor product M bE N is nonzero.

p3q For every prime ideal p Ď π0E and every regular system of parameters x1, . . . , xk
for the local ring pπ0Eqp, the tensor product MbEA is nonzero, where A is defined
as in Lemma 9.2.3.

Proof. The implications p1q ñ p2q ñ p3q are obvious, and the implication p2q ñ p1q
follows from the stability of the 8-category ModE . We will complete the proof by
showing that p3q ñ p2q. Let N be a nonzero E-module; we wish to show that M bE N
is nonzero. Applying Lemma 9.2.3, we can choose a prime ideal p Ď π0E and a regular
system of parameters x1, . . . , xk for the local ring pπ0Eqp for which the tensor product
AbE N is nonzero, where A is defined as in Lemma 9.2.3. We note that A admits the
structure of an algebra over the localization Ep (for example, it can be obtained by a
variant of the Thom spectrum construction studied in §3). By construction, π˚A is
isomorphic to κppqrt˘1s, where κppq denotes the residue field of the local ring pπ0Eqp
and the element t has degree 2. It follows that every (left or right) A-module spectrum
can be decomposed as a direct sum of copies of A and the suspension ΣA. Assumption
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p3q guarantees that the tensor product MbEA is nonzero. Consequently, we can assume
that M bE A contains ΣiA as a direct summand (as a right A-module) and AbE N
contains ΣjA as a direct summand (as a left A-module), for some i, j P t0, 1u. It then
follows that the tensor product

M bE AbE N » pM bE Aq bA pAbE Nq

contains Σi`jA as a direct summand (in the 8-category ModE). In particular, M bE

AbE N is nonzero, so that M bE N is also nonzero.

Proof of Proposition 9.2.2. Let M be a perfect E-module. If M is full and x P π0E is
nonzero, then the localization M rx´1s »M bE Erx

´1s must be nonzero, so the abelian
group π˚M rx

´1s » pπ˚Mqrx
´1s is likewise nonzero, which shows that paq ñ pbq.

Conversely, suppose that pbq is satisfied. We will show that M satisfies condition
p3q of Proposition 9.2.4. Fix a prime ideal p Ď π0E and a regular system of parameters
x1, . . . , xk for the local ring pπ0Eqp. Note that π˚M is a finitely generated module over
the Noetherian ring π˚E (Proposition 2.9.4) which is not annihilated by any element
of pπ0Eq ´ p. It follows that the localization Mp is a nonzero (perfect) module over
the localization Ep. For 0 ď i ď k, define Apiq as in the proof of Lemma 9.2.3, and set
Mpiq “ Apiq bE M . We will prove the following assertion 0 ď i ď k:

p˚iq Each homotopy group of Mpiq is a nonzero finitely generated module over the
commutative ring π0Ep.

Note that assertion p˚0q is obvious (since Mp0q “Mp), and assertion p˚kq will complete
the proof of paq (by virtue of Proposition 9.2.4). It will therefore suffice to show that
p˚i´1q implies p˚iq. For this, we note that we have a fiber sequence

Mpi´ 1q xi
ÝÑMpi´ 1q ÑMpiq

which yields a long exact sequence of homotopy groups

πmMpi´ 1q xi
ÝÑ πmMpi´ 1q Ñ πmMpiq Ñ πm´1Mpi´ 1q Ñ πm´1Mpi´ 1q.

Here the outer terms are finitely generated modules over π0Ep (by virtue of assumption
p˚i´1q), so the middle term is as well (since the ring π0Ep is Noetherian). Moreover,
if we choose m so that πmMpi´ 1q is nonzero, then πmMpiq is also nonzero (the map
xi : πmMpi´ 1q Ñ πmMpi´ 1q cannot be surjective, by Nakayama’s Lemma).

9.3 The Subgroup Br5pEq

Let E be a Lubin-Tate spectrum and let κ be the residue field of E. Our goal in
this section is to show that the subgroup Br5pEq Ď BrpEq (defined in the introduction
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to §9) is isomorphic to the Brauer-Wall group BWpκq (defined in §2.8). More precisely,
we have the following result:

Theorem 9.3.1. The composite map

Br5pEq ãÑ BrpEq Ñ BMpEq

is a monomorphism, whose image coincides with the image of the monomorphism
ι : BrpModgr

K˚
q Ñ BMpEq be the monomorphism ι of Remark 6.9.5.

Corollary 9.3.2. The Brauer group Br5pEq is isomorphic to the Brauer-Wall group
BWpκq.

Proof. Combine Theorem 9.3.1 with Proposition 5.7.1.

Warning 9.3.3. The isomorphism Br5pEq » BWpκq of Corollary 9.3.2 is not quite
canonical: it depends on a choice of nonzero element t P K2 (see Warning 5.7.2).

Remark 9.3.4. Suppose that the residue field κ of E has characteristic different from
2. It follows from Theorem 9.3.1 and Proposition 6.9.3 that Brauer group BrpEq splits
as a direct sum Br5pEq ‘ Br1pEq, where Br1pEq is the kernel of the composite map

BrpEq Ñ BMpEq ρ
ÝÑ BrpModgr

K˚
q ˆQF Ñ QF

(here ρ is the isomorphism of Proposition 6.9.3). Using Theorem 8.0.5, we deduce that
Br1pEq can be obtained as the inverse limit of a tower of surjective group homomorphisms

¨ ¨ ¨Br1p1ď3q
ρ3
ÝÑ Br1p1ď2q

ρ2
ÝÑ Br1p1ď1q

ρ1
ÝÑ Br1p1ď0q

ρ0
ÝÑ 0,

where we have canonical isomorphisms kerpρiq » K´2 bκ pm
i`2{mi`3q After making a

choice of nonzero element t P K2, we obtain the (slightly less canonical) description of
BrpEq given in Theorem 1.0.11.

Theorem 9.3.1 is an immediate consequence of the following three assertions:

Proposition 9.3.5. There exists a commutative diagram of Brauer groups

Br5pEq //

��

BrpEq

��
BrpModgr

K˚
q

ι // BMpEq,

where the upper horizontal map is the canonical inclusion, the bottom horizontal map
is the monomorphism of Remark 6.9.5, and the right vertical map is induced by the
functor Syn♥ : Modloc

E Ñ Syn♥
E.
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Proposition 9.3.6. The image of the composite map Br5pEq ãÑ BrpEq Ñ BMpEq
contains the image of the monomorphism ι : BrpModgr

K˚
q Ñ BMpEq.

Proposition 9.3.7. The map BrpEq Ñ BMpEq is a monomorphism when restricted to
the subgroup Br5pEq.

Proposition 9.3.5 follows immediately from the construction of the map ι (by
definition, if A is an E-algebra having the property that π˚A is a free module over π˚E,
then the Milnor module Syn♥rAs is constant in the sense of Definition 6.3.7).

Proof of Proposition 9.3.6. For simplicity, let us assume that the field κ has character-
istic different from 2 (for the characteristic 2 case, we refer the reader to Remark 9.3.8
below). Choose a nonzero element t P π2E, so that we can identify Modgr

K˚
with the

category Vectgr
κ of pZ{2Zq-graded vector spaces and the Brauer group BrpModgr

K˚
q with

the Brauer-Wall group BWpκq of the field κ. According to Remark 2.8.11, the group
BWpκq is generated by the image of Brpκq together with elements of the form rκp

?
aqs

for a P κˆ. Using Theorem 9.1.1, we are reduced to showing that ιprκp
?
aqsq belongs to

the image of α0, for each a P κˆ. We will prove this by establishing the following more
precise assertion:

p˚q There exists a full Azumaya algebra A P AlgE such that Sy♥rAs is isomorphic to
the tensor product 1♥ bκ κp

?
aq (as an associative algebra object of the category

Syn♥
E of Milnor modules).

To prove p˚q, choose an element a P pπ0Eq
ˆ representing a, and PicpEq denote the

Picard space of E (see §3.1). Unwinding the definitions, we see that the truncation
τď1 PicpEq can be identified with the groupoid C of free graded pπ˚Eq-modules (up to
isomorphism, this category has two objects, given by π˚E and its shift π˚ΣE). The
tensor product of E-modules endows PicpEq with the structure of an E8-space and C
with the structure of a symmetric monoidal category. Note that the data of a monoidal
functor Z{2Z Ñ τď1 PicpEq is equivalent to the data of an object L P C equipped
with an isomorphism e : Lb2 » π˚E. In particular, we can choose a monoidal functor
corresponding to the object L “ π˚pΣEq, where e is the isomorphism π˚pΣ2Eq Ñ π˚E
given by multiplication by at. This monoidal functor determines a map of classifying
spaces Q0 : B Z{2Z Ñ τď2 BPicpEq. Since the homotopy groups πn BPicpEq are uniquely
2-divisible for n ą 2, we can lift Q0 to a map Q : B Z{2Z Ñ BPicpEq. Let A denote the
Thom spectrum of the induced map ΩpQq : Z{2Z Ñ PicpEq. Unwinding the definitions,
we see that A can be identified with the direct sum E ‘ ΣE, and that we have a
canonical isomorphism π˚A » pπ˚Eqrxs{px

2 ´ atq where x is homogeneous of degree 1.
It is now easy to see that A satisfies the requirements of p˚q.
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Remark 9.3.8. Proposition 9.3.6 remains valid when κ has characteristic 2, but requires
a different proof. As above, we can choose a nonzero element t P K2, which supplies an
isomorphism BrpModgr

K˚
q » BWpκq. Let A0 be a graded Azumaya algebra over κ. The

assumption that κ has characteristic 2 guarantees that rA0s is annihilated by the map
BWpκq Ñ BWpκ1q, for some finite Galois extension κ1 of κ (see Remark 2.8.10). In this
case, we can choose an isomorphism κ1 bκ A0 » Endκ1pV q, where V is a pZ{2Zq-graded
vector space over κ. It follows that there exists a semilinear action of the Galois group
G “ Galpκ1{κq on the algebra Endκ1pV q, whose algebra of invariants can be identified
with A0. In this case, we can regard κ1 as the residue field of a Lubin-Tate spectrum E1

which is étale over E, and we can lift V to an E1-module M such that π˚M is a finitely
generated free module over π˚E1. The action of the Galois group G on Endκ1pV q can
then be lifted to an action of G on EndE1pMq (in the 8-category of E1-algebras), whose
(homotopy) fixed point algebra A “ EndE1pMqG is an Azumaya algebra over E. It is
then easy to check that the Brauer class rAs belongs to Br5pEq which is a preimage of
ιprA0sq under the map Br5pEq ãÑ BrpEq Ñ BMpEq.

Proof of Proposition 9.3.7. Let x belong to the kernel of the map Br5pEq Ñ BMpEq;
we wish to show that x vanishes. Write x “ rAs, where A is an Azumaya algebra for
which π˚A is a free module over π˚E. Then the Milnor module Sy♥rAs can be identified
with EndpMq, where M is a nonzero dualizable object of Syn♥

E . Our assumption
that π˚A is free over π˚E guarantees that the Milnor module Sy♥rAs is constant.
Applying Corollary 6.6.10, we deduce that M is constant. Replacing M by M r1s if
necessary, we may assume that M contains 1♥ as a direct summand. Let e : M ÑM
denote the associated projection map. Then we can identify e with an element of
HomSyn♥

E
p1♥,EndpMqq » pπ0Aq{mpπ0Aq. Because π0E is a Henselian local ring (and

π0A is a finite algebra over π0E), we can lift e to an idempotent element e P π0A.
This idempotent determines a decomposition A » N ‘ N 1 in the 8-category of left
A-modules, where π˚N » pπ˚Aqe and π˚N

1 » pπ˚Aqp1 ´ eq. The left action of A on
N endows Sy♥rN s with the structure of a left module over Sy♥rAs. By construction,
this module is isomorphic to M . Consequently, the map A Ñ EndEpNq induces an
isomorphism of Milnor modules, and is therefore an equivalence (Corollary 7.3.8). It
follows that x “ rAs vanishes in Br5pEq Ď BrpEq, as desired.

9.4 Comparison of Br5pEq and Brfull
pEq

Let E be a Lubin-Tate spectrum with residue field κ.

Conjecture 9.4.1. If the residue field κ has characteristic different from 2, then the
inclusion Br5pEq Ď BrfullpEq is an equality. In other words, every Azumaya algebra A
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over E which is full as an E-module is Morita equivalent to an Azumaya algebra B
such that π˚B is free as a module over π˚E.

As partial evidence for Conjecture 9.4.1, we offer the following:

Proposition 9.4.2. Assume that κ has characteristic different from 2 and let ρ :
BMpEq Ñ BrpModgr

K˚
q ˆQF be the isomorphism of Proposition 6.9.3. Then the com-

posite map

BrfullpEq Ñ BrpEq Ñ BMpEq ρ
ÝÑ BrpModgr

K˚
q ˆQF Ñ QF

vanishes.

Remark 9.4.3. Assume that κ has characteristic different from 2. If Conjecture 9.4.1 is
satisfied, then Proposition 9.4.2 follows immediately from Proposition 9.3.5. Conversely,
Propositions 9.4.2 and 9.3.6 guarantee that BrfullpEq and Br5pEq have the same image
in the Brauer-Milnor group BMpEq. It follows that Conjecture 9.4.1 is equivalent to the
assertion that the composite map BrfullpEq Ñ BrpEq Ñ BMpEq is a monomorphism
(see Proposition 9.3.7).

Proof of Proposition 9.4.2. Let m Ď π0E denote the maximal ideal, let K˚ denote the
graded ring pπ˚Eq{mpπ˚Eq, and set V “ pm{m2q_ so that QF is the set of quadratic
forms q : V Ñ K´2. Let A be a full Azumaya algebra over E, and let η denote the
class of the Azumaya algebra Sy♥rAs in the Brauer-Milnor group BMpEq, so that we
can write ρpηq “ pη0, qq for some q P QF; we wish to prove that q “ 0. The associated
bilinear form of q determines a linear map

λ : V Ñ HomκpV,K´2q “ pm{m
2q bκ K´2.

Since the characteristic κ is different from 2, it will suffice to show that the map λ
vanishes. Assume otherwise. Then we can choose an element v P V such that λpvq ‰ 0.
Write λpvq “ t´1x, where t is nonzero element of K2 and x is the residue class of some
element x P m´m2.

Let F : Syn♥
E Ñ MpV q be the normalized Modgr

K˚
-linear equivalence of sym-

metric monoidal categories of Proposition 6.9.1, and set B “ F pSy♥rAsq. Write
B “ pB˚, tdwuwPV q, where B˚ is a graded K˚-algebra equipped with derivations
dw : B˚ Ñ B˚´1. For each element w P V , Proposition 5.7.4 supplies a unique el-
ement bw P B´1 satisfying the identity dwpbq “ bwb` p´1qdegpbq`1bbw. In particular, we
have

dwpbvq “ bwbv ` bvbw “ xw, λpvqy “ t´1wpxq (9.1)
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Let Mx be the
Ź˚
K˚
pV q-module described in Construction 5.5.1, so that we have an

exact sequence
0 Ñ K˚r´1s ÑMx Ñ K˚ Ñ 0.

Tensoring with B, we obtain an exact sequence

0 Ñ Br´1s ÑMx bK˚ B
u
ÝÑ B Ñ 0 (9.2)

Note that we can identify Mx bK˚ B with Br´1s ‘ B as a graded K˚-module, with
action of

Ź˚
K˚
pV q given by the formula

wpb1, bq “ p´dwb
1 ` wpxqb, dwbq.

An elementary calculation using (9.1) shows that the construction b ÞÑ pt´1bvb, bq
determines a section of u in the category MpV q: that is, the exact sequence (9.2)
splits (in the abelian category MpV q) Shifting and invoking our assumption that F is
normalized, we deduce that the exact sequence of Milnor modules

0 Ñ Sy♥rAs Ñ Sy♥rcofibpx : AÑ Aqs Ñ Sy♥rΣAs Ñ 0

splits. In particular, the Milnor module Sy♥rAs is isomorphic to a direct summand of
Sy♥rcofibpx : AÑ Aqs.

Since x does not belong to m2, we can extend x to a regular system of parameters
x, y1, . . . , ym for the local ring π0E. Set B “

Â

1ďiďm cofibpE yi
ÝÑ Eq. Using the above

argument (and the fact that the functor Sy♥ is symmetric monoidal), we deduce that
the Milnor module Sy♥rAbE Bs is a direct summand of

Sy♥rcofibpx : AÑ Aq bE Bs » Sy♥rAbE cofibpx : B Ñ Bqs.

By construction, the cofiber cofibpx : B Ñ Bq is an atomic E-module, so that A bE
cofibpx : B Ñ Bq is a quasi-molecular E-module. It follows that the Milnor module
Sy♥rA bE cofibpx : B Ñ Bqs is quasi-molecular, and therefore the direct summand
Sy♥rAbE Bs is quasi-molecular. Applying Corollary 6.2.6, we deduce that E-module
AbE B is a quasi-molecular. In particular, the localization

pAbE Bqrx
´1s » AbE Brx

´1s

vanishes. This contradicts our assumption that A is full, since Brx´1s is a nonzero
E-module.
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Chapter 10

Atomic Azumaya Algebras

Let κ be a field. Then every element of Brpκq has the form rDs, where D is a central
division algebra over κ. Moreover, the division algebra D is unique up to isomorphism.
In this section, we establish a weak analogue for the Brauer group BrpEq of a Lubin-Tate
spectrum E: if an element x P BrpEq can be represented by an atomic Azumaya algebra
A, then A is determined up to equivalence (Proposition 10.1.1). We also characterize
those elements x P BrpEq which admit such representatives, at least when the residue
field of E has characteristic ‰ 2 (Theorem 10.3.1). Beware, however, that not every
element of BrpEq has this property (see Example 10.1.6).

10.1 Atomic Elements of BrpEq

Let E be a Lubin-Tate specturm, which we regard as fixed throughout this section.

Proposition 10.1.1. Let A,B P AlgE be atomic E-algebras. Then A and B are
equivalent (as objects of the 8-category AlgE) if and only if they are Morita equivalent
(in the sense of Definition 2.1.1).

Corollary 10.1.2. Let A,B P AlgE be atomic Azumaya algebras. Then A and B are
equivalent (as objects of the 8-category AlgE) if and only if the Brauer classes rAs and
rBs are identical (as elements of the abelian group BrpEq).

Definition 10.1.3. Let x be an element of BrpEq. We will say that x is atomic if we
can write x “ rAs, where A is an atomic Azumaya algebra over E.

Remark 10.1.4. It follows from Corollary 10.1.2 that the construction A ÞÑ rAs
determines a bijection of sets

tAtomic Azumaya algebras over E u{equivalence » tAtomic elements of BrpEqu.
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Proof of Proposition 10.1.1. The “only if” direction is obvious. For the converse, assume
that A and B are atomic E-algebras which are Morita equivalent. It follows that there
exists a Modloc

E -linear equivalence of 8-categories

λ : LModA “ LModApModloc
E q Ñ LModBpModloc

E q » LModB .

Note that the ring κ “ π0A is a field. In particular, it contains no idempotents other
than 0 and 1. It follows that A is indecomposable as a left A-module spectrum: that is,
it cannot be written as direct sum M ‘N where M and N are both nonzero. Because
the functor λ is an equivalence, it follows that λpBq is an indecomposable object of
LModB. Our assumption that B is atomic guarantees that every B-module can be
decomposed as a direct sum of modules of the form B and ΣB (Proposition 3.6.3). It
follows that λpAq is equivalent either to B or ΣB (as an object of LModB). Composing
λ with the suspension functor Σ if necessary, we may assume that there exists an
equivalence λpAq » B.

Let E “ pModModloc
E
pPrLqModloc

E {q denote the 8-category whose objects are pairs
pC, Cq, where C is a presentable 8-category equipped with an action of Modloc

E and
C P C is a distinguished object (which we can identify with a Modloc

E -linear functor
λ : Modloc

E Ñ C). Our assumption that λpAq » B guarantees that λ can be promoted
to an equivalence λ : pLModA, Aq » pLModB, Bq in the 8-category E . According to
Theorem HA.4.8.5.5 , the construction R ÞÑ pLModRpModloc

E q, Rq determines a fully
faithful embedding AlgpModloc

E q ãÑ E . It follows that λ can be lifted to an equivalence
A » B in the 8-category AlgpModloc

E q Ď AlgE .

Remark 10.1.5. The proof of Proposition 10.1.1 does not require the full strength of
our assumption that A is atomic: it is sufficient to assume that B is atomic and that
the ring π0A does not contain idempotent elements different from 0 and 1.

Example 10.1.6. The identity element 0 P BrpEq is not atomic. In other words, there
does not exist an atomic Azumaya algebra B satisfying rEs “ rBs in BrpEq. This
follows immediately from Remark 10.1.5 (since π0E is an integral domain, and B is not
equivalent to E as an E-algebra).

10.2 Atomic Elements of BMpEq

Let E be a Lubin-Tate spectrum and let x be an element of the Brauer group BrpEq.
Our goal in this section is to show that the question of whether or not x is atomic (in
the sense of Definition 10.1.3) depends only on the image of x in the Brauer-Milnor
group BMpEq (Proposition 10.2.5). We begin by establishing some purely algebraic
analogues of the results of §10.1.
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Lemma 10.2.1. Let B be an atomic algebra object of the abelian category of Milnor
modules Syn♥

E, and let M be a left B-module object (in the abelian category Syn♥
E).

Then M can be decomposed as a direct sum of modules of the form B and Br1s.

Proof. Let m denote the maximal ideal of π0E and let K˚ denote the graded ring
pπ˚Eq{mpπ˚Eq. Combining Proposition 5.6.9 with Theorem 6.6.6, we obtain an equiv-
alence of categories LModBpSyn♥

Eq » Modgr
K˚

. It now suffices to observe that every
graded K˚-module can be decomposed as a direct sum of copies of K˚ and K˚r1s.

Proposition 10.2.2. Let A and B be atomic algebra objects of Syn♥
E. Then A and B

are isomorphic (as algebra objects of Syn♥
E) if and only if they are Morita equivalent (in

the sense of Definition 2.1.1).

Proof. We proceed as in the proof of Proposition 10.1.1. The “only if” direction is
obvious. To prove the converse, assume that A and B are Morita equivalent: that is,
there exists a Syn♥

E-linear equivalence of categories

λ : LModApSyn♥
Eq Ñ LModBpSyn♥

Eq.

Note that the endomorphism ring of A in the abelian category of left A-modules
can be identified with HomSyn♥

E
p1♥, Aq » κ, where κ is the residue field of E (see

Proposition 6.4.4). It follows that A is an indecomposable object of the abelian category
LModApSyn♥

Eq, so that λpAq is an indecomposable object of LModBpSyn♥
Eq. Invoking

Lemma 10.2.1, we deduce that λpAq is isomorphic to either B or Br1s. Replacing λ by
λr´1s if necessary, we may assume that λpAq is isomorphic to B.

Let E “ pModSyn♥
E
pPrLqSyn♥

E {
q denote the 8-category whose objects are pairs

pC, Cq, where C is a presentable 8-category equipped with an action of Syn♥
E and

C P C is a distinguished object (which we can identify with a Syn♥
E-linear functor

λ : Syn♥
E Ñ C). Our assumption that λpAq » B guarantees that λ can be promoted

to an equivalence λ : pLModApSyn♥
Eq, Aq » pLModBpSyn♥

Eq, Bq in the 8-category E .
According to Theorem HA.4.8.5.5 , the construction R ÞÑ pLModRpSyn♥

Eq, Rq determines
a fully faithful embedding AlgpSyn♥

Eq ãÑ E . It follows that λ can be lifted to an
isomorphism A » B in AlgpSyn♥

Eq.

Corollary 10.2.3. Let A and B be atomic Azumaya algebra objects of the abelian
category Syn♥

E. Then A and B are isomorphic (as algebra objects of Syn♥
E) if and only

if the Brauer classes rAs and rBs are equal (as elements of the Brauer-Milnor group
BMpEq).

Definition 10.2.4. Let E be a Lubin-Tate spectrum. We will say that an element
x P BMpEq is atomic if we can write x “ rAs, where A is an atomic Azumaya algebra
object of Syn♥

E .
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Proposition 10.2.5. Let x be an element of the Brauer group BrpEq and let x denote
the image of x in the Brauer-Milnor group BMpEq. Then x is atomic (in the sense of
Definition 10.1.3) if and only if x is atomic (in the sense of Definition 10.2.4).

Proof. The “only if” direction is clear: if we can write x “ rAs for some atomic
Azumaya algebra A P AlgE , then Sy♥rAs is an atomic Azumaya algebra in Syn♥

E

satisfying x “ rSy♥rAss. Conversely, suppose that x is atomic, so we can write x “ rAs
for some atomic Azumaya algebra A P AlgpSyn♥

Eq. For n ě 0, let xn denote the
image of x in Brp1ďnq (see §8). Applying Lemma 8.3.3 repeatedly, we can choose a
compatible sequence of Azumaya algebras tAn P AlgpSyn1ďnquně0 satisfying A0 “ A
and rAns “ xn P Brp1ďnq. Then A “ tAnuně0 can be identified with an Azumaya
algebra object of the 8-category SynE » lim

ÐÝ
τďn SynE . In particular, A is dualizable

as a synthetic E-module, so we can write A “ SyrBs for some essentially unique object
B P AlgpModloc

E q (Lemma 8.1.6). It follows immediately that B is an Azumaya algebra
(as in the proof of Proposition 8.1.1). The equivalence A » Sy♥rBs shows that Sy♥rBs
is an atomic algebra object of Syn♥

E , so that B is an atomic E-module (Corollary 6.2.7).
Using the injectivity of the map BrpEq Ñ lim

ÐÝ
Brp1ďnq (Theorem 8.0.5), we deduce that

rBs “ x P BrpEq, so that x is atomic as desired.

10.3 The Case of an Odd Prime

Let E be a Lubin-Tate spectrum, let m Ď π0E be the maximal ideal, and let
K˚ denote the graded ring pπ˚Eq{mpπ˚Eq. If the residue field κ “ pπ0Eq{m has odd
characteristic, then we can use the isomorphism of Proposition 6.9.3 to explicitly describe
the atomic elements of the Brauer-Milnor group BMpEq.

Theorem 10.3.1. Assume that κ has characteristic ‰ 2, and let

ρ : BMpEq » BrpModgr
K˚
q ˆQF

denote the isomorphism of Proposition 6.9.3; here QF denotes the set of quadratic forms
q : pm{m2q_ Ñ K´2. Let x be an element of the Brauer-Milnor group BMpEq and write
ρpxq “ px, qq. Then x is atomic if and only if the following conditions are satisfied:

paq The quadratic form q is nondegenerate. In particular, q induces an isomorphism
pm{m2q_ Ñ pπ´2Kq bκ pm{m

2q, under which we can identify q with a quadratic
form pq : m{m2 Ñ π2K.

pbq We have x “ rCl
pqpm{m

2qs P BrpModgr
K˚
q, where Cl

pqpm{m
2q denotes the Clifford

algebra of pq (see Construction 5.3.2).
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Proof. Let V denote the vector space pm{m2q_ and let F : Syn♥
E » MpV q be the

symmetric monoidal equivalence of categories supplied by Proposition 6.9.1. Suppose
that x is atomic, so we can write x “ rAs for some atomic Azumaya algebra A P Syn♥

E .
Then F pAq is an atomic algebra object of MpV q (in the sense of Definition 5.3.1),
and is therefore isomorphic to the Clifford algebra Cl

pq1pV
_q for some quadratic form

pq1 : V _ Ñ π2K (Proposition 5.3.5). Let b : V _ ˆ V _ Ñ π2K be the bilinear form
associated to pq1 (given by the formula bpx, yq “ pq1px` yq ´ pq1pxq ´ pq1pyq). Note that we
have the identity bpx, yq “ xy ` yx P Cl

pq1pV
_q2. Consequently, if x P V _ belongs to

the kernel of b (meaning that bpx, yq “ 0 for all y P V _), then x belongs to the graded
center of the Clifford algebra Cl

pq1pV
_q. Our assumption that A is an Azumaya algebra

guarantees that Cl
pq1pV

_q is an Azumaya algebra object of Modgr
K˚

, so its graded center
coincides with K˚. It follows that the bilinear form b is nondegenerate, and induces an
isomorphism ξ : pπ´2Kq bκ V

_ Ñ V . Using this isomorphism, we can identify pq1 with
a quadratic form q1 : V _ Ñ π´2K. To verify paq and pbq, it will suffice to show that
q “ q1 (so that pq “ pq1).

Fix an element v P V ; we claim that qpvq “ q1pvq. Let us regard λ as a primitive
element of the Hopf algebra

Ź˚
K˚
pV q, so that it determines a derivation

dv : Cl
pq1pV

_q Ñ Cl
pq1pV

_q

of degree ´1, characterized by the identity dvpλq “ λpvq for λ P V _. Choose a nonzero
element t P π´2K. According to Proposition 5.7.4, there exists a unique element
av P Cl

pq1pV
_q1 satisfying

dvpyq “ tpavy ` p´1qn`1yavq (10.1)

for every element y P Cl
pq1pV

_q which is homogeneous of degree n. Note that, to establish
that (10.1) holds for all y, it suffices to consider the case where y P V _ (since both
sides of (10.1) can be regarded as derivations of the Clifford algebra Cl

pq1pV
_q of degree

p´1q). Consequently, the element av is characterized by requirement that the formula

λpvq “ dvpλq “ tpavλ` λavq “ tbpt´1ξ´1pvq, λq

holds for all λ P V _. We therefore have av “ t´1ξ´1pvq P V _. Unwinding the definitions,
we obtain

qpvq “ ptavq
2 “ t2pq1pavq “ t2pqpt´1ξ´1pvqq “ q1pvq,

as desired. This completes the proof of the “only if” assertion of Theorem 10.3.1.
For the converse, suppose that paq and pbq are satisfied. Condition paq guarantees

that B “ Cl
pqpV

_q is an Azumaya algebra object of MpV q (see Remark 5.3.4). Using
Proposition 6.9.1, we can choose an isomorphism B » F pAq, where A is an atomic
Azumaya algebra object of Syn♥

E . Using assumption pbq and the preceding calculation,
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we see that ρprAsq “ px, qq. Since the map ρ is an isomorphism (Proposition 6.9.3), we
deduce that rAs “ x P BMpEq, so that x is atomic.

Remark 10.3.2. In the situation of Theorem 10.3.1, we have an isomorphism of Clifford
algebras

Cl
pqpm{m

2q » ClqpV q,

where V “ pm{m2q_, and ClqpV q denotes the graded K˚-algebra generated by V (whose
elements we regard as homogeneous of degree p´1q) subject to the relations v2 “ qpvq
for v P V .

Corollary 10.3.3. Let E be a Lubin-Tate spectrum whose residue field κ has character-
istic ‰ 2 and let x be an element of the Brauer group BrpEq having image px, qq under
the composite map

BrpEq Ñ BMpEq ρ
ÝÑ BrpModgr

K˚
q ˆQ,

where ρ is the isomorphism of Proposition 6.9.3. Then x is atomic if and only if
the quadratic form q is nondegenerate and x is represented by the Clifford algebra
Clqppm{m2q_q of Remark 10.3.2.

Proof. Combine Theorem 10.3.1, Remark 10.3.2, and Proposition 10.2.5.
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