Recall that our goal is to prove the following:

Theorem 1. Let X be a Poincare pair of dimension $n \geq 5$, ζ a stable PL bundle on X, and $f : M \to X$ a degree one normal map, where M is a PL manifold. Let $\sigma_f^q \in \Omega^\infty \mathbb{L}^q(X, \zeta_X)$ be the relative signature of f, and suppose we are given a path p from σ_f^q to the base point of $\Omega^\infty \mathbb{L}^q(X, \zeta_X)$. (We can identify such a path with a Lagrangian in the Poincare object representing σ_f^q, which is well-defined up to bordism). Then there exists a Δ^1-family of degree one normal maps $F : B \to X \times \Delta^1$, where B is a bordism from $M = F^{-1}(X \times \{0\})$ to a PL manifold $N = F^{-1}(X \times \{1\})$ such that F induces a homotopy equivalence $f' : N \to X$. Moreover, we can arrange that F determines a path from σ_f^q to $\sigma_{f'}^q = 0$ which is homotopic to p.

In the last lecture, we introduced the technique of surgery as a method of producing normal bordisms from M to other PL manifolds (equipped with degree one normal maps to X). Moreover, we saw how to use the method of surgery to reduce Theorem 1 to the special case where $f : M \to X$ induces an equivalence of fundamental groupoids. We may further assume without loss of generality that X (and therefore also M) are connected. Let us fix a base point of X, allowing us to define a fundamental group $G = \pi_1 X$. Let \tilde{X} denote the universal cover of X and let $\tilde{M} = M \times_X \tilde{X}$ be the corresponding universal cover of M, so that G acts on \tilde{X} and \tilde{M} by deck transformations.

The spherical fibration ζ_X is classified by a map $X \to \text{Pic}(S)$, which induces a map

$$G = \pi_1 X \to \pi_1 \text{Pic}(S) = \pi_0 \text{GL}_1(S) = \text{GL}_1(\pi_0 S) = \text{GL}_1(\mathbb{Z}) = \{ \pm 1 \},$$

which we will denote by ϵ. This homomorphism vanishes if and only if ζ_X is orientable with respect to ordinary homology (that is, if and only if ϵ and ζ is a constant sheaf). Let $Z[\pi_1 X] = Z[G]$ be the group algebra of G. Then $Z[G]$ admits an involution, given by $g \mapsto \epsilon(g) g^{-1}$. Let $Q^*, Q^\natural : (\text{LMod}_{Z[G]}^{fp})^{op} \to \text{Sp}$ be the quadratic functors given by

$$Q^q(M) = \text{Mor}_{Z[G]}(-Z[G] (M \wedge M, Z[G]))_{h\Sigma_2}$$

$$Q^\natural(M) = \text{Mor}_{Z[G]}(-Z[G] (M \wedge M, Z[G])^{h\Sigma_2}.$$

Using the π-π theorem, we can identify $\Omega^\infty \mathbb{L}^q(X, \zeta_X)$ with $\Omega^\infty + n \mathbb{L}^q(Z[G]) \simeq L(\text{LMod}_{Z[G]}^{fp}, \Omega^n Q^\natural)$.

Let us attempt to describe the invariant σ_f^q more explicitly in these terms. The visible symmetric signatures σ^*_X and σ^*_M determine Poincare objects of $(\text{LMod}_{Z[G]}^{fp}, \Omega^n Q^\natural)$. Unwinding the definitions, we see that these objects are given concretely by the duals of the $Z[G]$-modules given by $C_*(\tilde{X}; Z)$ and $C_*(\tilde{M}; Z)$ (note that each of these is a finitely presented $Z[G]$-module, since \tilde{X} and \tilde{M} admit cell decompositions which are invariant under G, whose cells break up into finitely many free G-orbits). Using Poincare duality, we see that both of these objects are self-dual up to a shift; more precisely, the relevant Poincare objects are represented by $\Sigma^{-n} C_*(\tilde{X}; Z)$ and $\Sigma^{-n} C_*(\tilde{M}; Z)$.

Remark 2. Using Poincare duality on the noncompact manifold \tilde{M}, we can identify $\Sigma^{-n} C_*(\tilde{M}; Z)$ with $C_c^*(\tilde{M}; Z)$, where the subscript indicates that we take compactly supported cochains. This identification
is not quite G-equivariant, since the action of G on \tilde{M} may not preserve orientations (the failure of the G-action to preserve orientations is codified by the homomorphism $\epsilon : G \to \{\pm 1\}$). Informally speaking, the symmetric bilinear form on $C_*^G(\tilde{M}; \mathbb{Z})$ is easy to describe: it carries a pair of compactly supported \mathbb{Z}-valued cochains u and v to the sum

$$\sum_{g \in G} (u \cup g(v))[M] \in \mathbb{Z}[G].$$

Here the condition that u and v both have compact support guarantees that the sum on the left hand side is indeed finite.

We have seen that the degree one map $f : M \to X$ determines a homotopy equivalence

$$\Sigma^{-n}C_*(\tilde{M}; \mathbb{Z}) \simeq V \oplus \Sigma^{-n}C_*(\tilde{X}; \mathbb{Z})$$

for some (finitely presented) $\mathbb{Z}[G]$-module spectrum V. Moreover, there is a point $q \in \Sigma^{-n}Q^p(V)$ such that (V, q) is a Poincare object of $\text{LMod}^p_{\mathbb{Z}[G]}$, representing the relative signature σ_{Jq}^p.

Now suppose we are given a normal surgery datum in M. We have seen that the degree one map $f : M \to X$ determines a homotopy equivalence

$$\Sigma^{-n}C_*(\tilde{M}; \mathbb{Z}) \simeq V \oplus \Sigma^{-n}C_*(\tilde{X}; \mathbb{Z})$$

for some (finitely presented) $\mathbb{Z}[G]$-module spectrum V. Moreover, there is a point $q \in \Sigma^{-n}Q^p(V)$ such that (V, q) is a Poincare object of $\text{LMod}^p_{\mathbb{Z}[G]}$, representing the relative signature σ_{Jq}^p.

Now suppose we are given a normal surgery datum in M. We have seen that the degree one map $f : M \to X$ determines a homotopy equivalence

$$\Sigma^{-n}C_*(\tilde{M}; \mathbb{Z}) \simeq V \oplus \Sigma^{-n}C_*(\tilde{X}; \mathbb{Z})$$

for some (finitely presented) $\mathbb{Z}[G]$-module spectrum V. Moreover, there is a point $q \in \Sigma^{-n}Q^p(V)$ such that (V, q) is a Poincare object of $\text{LMod}^p_{\mathbb{Z}[G]}$, representing the relative signature σ_{Jq}^p.

Now suppose we are given a normal surgery datum in M, giving in particular a codimension zero embedding $\alpha : S^p \times D^{p+1} \hookrightarrow M$. This determines a normal bordism from M to another PL manifold N equipped with a degree one normal map $f : N \to X$, hence a bordism between the Poincare objects representing σ_{Jq}^p and σ_{Jq}^p. The latter bordism is given by an algebraic surgery along some map of $\mathbb{Z}[G]$-module spectra $u : \Sigma^{-n}K \to V$. Let $B(\alpha)$ denote the trace of the surgery along α and let $\tilde{B}(\alpha) = B(\alpha) \times_X \tilde{X}$. Then $\text{cofib}(u)$ is the $\mathbb{Z}[G]$-module underlying relative signature associated to $B(\alpha)$ (as a normal bordism); that is, we have

$$\Sigma^{-n}C_*(\tilde{X}; \mathbb{Z}) \oplus \text{cofib}(u) \simeq \Sigma^{-n}C_*(\tilde{B}(\alpha); \mathbb{Z}).$$

It follows that $\Sigma^{-n}K \simeq \text{fib}(V \to \text{cofib}(u)) \simeq \text{fib}(\Sigma^{-n}C_*(\tilde{M}; \mathbb{Z}) \to \Sigma^{-n}C_*(\tilde{B}(\alpha); \mathbb{Z})$. We have a homotopy pushout diagram of spaces

$$\begin{array}{ccc} S^p & \longrightarrow & D^{p+1} \\ \downarrow & & \downarrow \\ M & \longrightarrow & B(\alpha) \end{array}$$

which lifts to a homotopy pushout diagram of G-spaces

$$\begin{array}{ccc} S^p \times G & \longrightarrow & D^{p+1} \times G \\ \downarrow & & \downarrow \\ \tilde{M} & \longrightarrow & \tilde{B}(\alpha). \end{array}$$

It follows that K is equivalent to the homotopy fiber of the map of the map $C_*(S^p \times G; \mathbb{Z}) \to C_*(D^{p+1} \times G; \mathbb{Z})$, which is homotopy equivalent to $\Sigma^p \mathbb{Z}[G]$. The map $u : \Sigma^{-n}K \to V$ is classified up to homotopy by an element of $\pi_{p-n}V$, which we can regard as a direct summand of $\pi_p C_*(\tilde{M}; \mathbb{Z}) \simeq H_p(\tilde{M}; \mathbb{Z})$. The above calculation shows that this homology class if the Hurewicz image of the class in $\pi_p \tilde{M}$ determined by a choice of lift of the map $\alpha_0 : S^p \to M$ determined by the surgery datum α_0.

Remark 3. In the above discussion, the module $K \simeq \Sigma^p \mathbb{Z}[G]$ is determined by the choice of dimension p, and the map $u : \Sigma^{-n}K \to V$ is determined by the homotopy class of the map $\alpha_0 : S^p \to M$ (and a nullhomotopy h of the composite map $S^p \to M \to X$). To perform algebraic surgery on the Poincare object (V, q), we need more: namely, a nullhomotopy of the restriction $q|\Sigma^{-n}K$. This choice of nullhomotopy depends on additional geometric data: the fact that α_0 is an embedding, and a choice of trivial normal bundle to α_0 compatible with h.

2
The key step in the proof of Theorem 1 is the following, which asserts that there is a sufficient supply of normal surgery data:

Theorem 4. Let \(f : M \to X \) be as in Theorem 1. Assume that \(M \) and \(X \) are connected and that \(f \) induces an isomorphism \(\pi_1 M \cong \pi_1 X \cong G \), and let \((V,q)\) be defined as above. Assume that \(f \) is \(p \)-connected, that we are given a map \(u : \Sigma^{p-n} Z[G] \to V \) a nullhomotopy of \(q \Sigma^{p-n} Z[G] \), so that (algebraic) surgery along \(u \) determines a bordism bordism from \((V,q)\) to another Poincare object \((V',q')\). Then this (algebraic) bordism can be obtained by performing (geometric) surgery with respect to a normal surgery datum \(\alpha : S^p \times D^{q+1} \to M \).

Remark 5. In the situation of Theorem 4, the relevant surgery does not change the fundamental group of \(M \). the relevant \(p \)-surgeries do not change the fundamental group of \(M \). Suppose we are given an embedding \(\alpha : S^p \times D^{q+1} \to M \) (where \(p + q + 1 = n \)). The manifold \(M^o \) obtained from \(M \) by removing the interior of the image of \(\alpha \) is homotopy equivalent to \(M \times S^p \), which differs from \(M \) in codimension \(q + 1 = n - p \). General position arguments show that this procedure does not change the fundamental group of \(M \) provided that \(n - p \ge 3 \). This condition is clearly satisfied when \(n \ge 5 \) and \(p \le \frac{n}{2} \). Surgery along \(\alpha \) produces a new manifold \(M' \), which is obtained as a pushout

\[
M^o \coprod_{S^p \times S^q} D^{q+1} \times S^q.
\]

Since \(q = n - p - 1 \ge 2 \), the sphere \(S^q \) is simply connected. It follows from van Kampen’s theorem \(\pi_1 M^o \to \pi_1 M' \) is surjective. Since the composite map \(\pi_1 M^o \to \pi_1 M' \to \pi_1 X \) is injective, we deduce that \(\pi_1 M' \cong \pi_1 M^o \).

Our goal for the remainder of this lecture is to explain how to deduce Theorem 1 from Theorem 4. To this end, let us suppose that we are given an arbitrary Lagrangian in \((V,q)\), given by a map \(L \to V \) and a nullhomotopy of \(qL \). We would like to show that the Lagrangian \(L \) can be obtained by a sequence of normal surgeries on the PL manifold \(M \). Before we can make this assertion, we may need to modify the choice of Lagrangian \(L \). Recall that the data of \(V \) together with the Lagrangian \(L \) can be identified with a quadratic object \((W,q')\) of \((L\text{Mod}_{Z[G]}^p, \Sigma^{-n-1}Q^q)\), where \(\Sigma^{-n-1}D(W) \cong L \) and \(q \) induces a map \(W \to \Sigma^{-n-1}D(W) \cong L \) having cofiber \(V \). Before proving Theorem 1, we are free to replace \(L \) by a cobordant Lagrangian by doing surgery on the quadratic object \(W \). We may therefore assume that \(W \) has been simplified by means of (algebraic) surgery below the middle dimension. Write \(n = 2k \) or \(n = 2k + 1 \). We may assume that \(W \) is \((-k-1)\)-connective, so that \(\Sigma^k W \cong \Sigma^{-1}D(W) \) has projective amplitude \(\le k \). Note in particular that \(\Sigma^k W \) is connected, and \(\Sigma^k V \) is connected (since \(H_0(\tilde{M}; \mathbb{Z}) \cong H_0(\tilde{X}; \mathbb{Z}) \cong \mathbb{Z} \)), so that \(\Sigma^k L \) is connected.

We now observe that the following conditions are equivalent for an integer \(1 \le p \le \frac{n}{2} \):

\begin{enumerate}
 \item The map \(f : M \to X \) is \(p \)-connected.
 \item The map \(\tilde{f} : \tilde{M} \to \tilde{X} \) is \(p \)-connected.
 \item The spectrum \(\Sigma^k V \) is \(p \)-connective.
 \item The spectrum \(\Sigma^k L \) is \(p \)-connective.
\end{enumerate}

The equivalence of \((a) \) and \((b) \) follows from the fact that \(f \) and \(\tilde{f} \) have the same homotopy fibers. The equivalence of \((b) \) and \((c) \) follows from the homotopy equivalence \(C_\ast(\tilde{M}; \mathbb{Z}) \cong C_\ast(\tilde{X}; \mathbb{Z}) \oplus \Sigma^k V \). To prove that \((c) \Rightarrow (d) \), we note that there is a fiber sequence

\[
\Sigma^k L \to \Sigma^k V \to D L.
\]

The homotopy groups \(\pi_i D(L) \cong \pi_i \Sigma^{n+1}(W) \) vanish for \(i < \frac{n}{2} \), so that \(\pi_i \Sigma^n L \to \pi_i \Sigma^n V \) is bijective for \(i < \frac{n}{2} \). This proves \((c) \Leftrightarrow (d) \).

Suppose that there exists an integer \(p < k - 1 \) such that \(\pi_p \Sigma^n L \ne 0 \). Choose \(p \) as small as possible, so that \(\Sigma^n L \) is \(p \)-connective. Any choice of element in \(\pi_p \Sigma^n L = \pi_p \Sigma^n L \) determines a map \(\Sigma^{p-n} Z[G] \to L \).
Composing with the map $L \to V$, we obtain a map $u : \Sigma^p-nZ[\mathbb{Z}] \rightarrow V$ and a nullhomotopy of $q|\Sigma^p-nZ[\mathbb{Z}]$. According to Theorem 4, we can lift this data to normal surgery datum $\alpha : S^p \times D^m \ni \sigma \mapsto M$. Let $f' : M' \rightarrow X$ be the normal map obtained by surgery along α, and let (V', q') be the corresponding representative for σ. Then (V', q') is obtained from (algebraic) surgery on V along u. It follows that L determines a Lagrangian L' in V', where L' is the cofiber of the map $\Sigma^p-nZ[\mathbb{Z}] \rightarrow L$. Since L is finitely presented as a $\mathbb{Z}[\mathbb{G}]$-module spectrum, its bottom homotopy group is finitely generated as a discrete $\mathbb{Z}[\mathbb{G}]$-module. Consequently, after finitely many application of this procedure, we can reduce to the case where $\pi_p \Sigma^n L \simeq 0$: that is, where $\Sigma^n L$ is $p + 1$-connective.

Applying the above argument finitely many times, we may reduce to the case where $\pi_p \Sigma^n L \simeq \pi_{p-n} L$ vanishes for $p < k - 1$. Consequently, we see that $\Sigma^n L$ is $(k-1)$-connective and has projective amplitude $\leq k$. Since L is finitely presented, we can argue as in the proof of the π-π theorem to deduce that there is a fiber sequence

$$\Sigma^{k-1} \mathbb{Z}[\mathbb{G}] \overset{\phi}{\rightarrow} \Sigma^n L \rightarrow (\Sigma^k \mathbb{Z}[\mathbb{G}])^{m'}.$$

for some integers m and m'. If $m > 0$, then the restriction of ϕ to a summand of $(\Sigma^{k-1} \mathbb{Z}[\mathbb{G}])^m$ yields a map $\Sigma^p-n \mathbb{Z}[\mathbb{G}] \rightarrow L$, where $p = k - 1$. We therefore obtain a composite map $\Sigma^p-n \mathbb{Z}[\mathbb{G}] \rightarrow L \rightarrow V$ and a nullhomotopy of $q|\Sigma^p-n \mathbb{Z}[\mathbb{G}]$. Invoking Theorem 4, we can lift this to a normal surgery datum. Performing surgery along this datum (and replacing M by the result), we can reduce to the case where there is a fiber sequence

$$\Sigma^{k-1} \mathbb{Z}[\mathbb{G}] \overset{\phi}{\rightarrow} \Sigma^n L \rightarrow (\Sigma^k \mathbb{Z}[\mathbb{G}])^{m'}.$$

Applying this procedure finitely many times, we reduce to the case $m = 0$: that is, $\Sigma^n L \simeq (\Sigma^k \mathbb{Z}[\mathbb{G}])^{m'}$. If $m' > 0$, we can restrict the map $L \rightarrow V$ to a summand of L to obtain a map $\Sigma^{k-n} \mathbb{Z}[\mathbb{G}] \rightarrow V$ and a nullhomotopy of $q|\Sigma^{k-n} \mathbb{Z}[\mathbb{G}]$. Invoking Theorem 4 again, we can perform surgery to reduce to the case $\Sigma^n L \simeq (\Sigma^k \mathbb{Z}[\mathbb{G}])^{m'-1}$. Applying this procedure finitely many times, we reduce to the case $L \simeq 0$. The fiber sequence

$$L \rightarrow V \rightarrow \Sigma^{-n}DL$$

shows that $V \simeq 0$, so that the map $\tilde{f} : \tilde{M} \rightarrow \tilde{X}$ induces an isomorphism on homology. Since \tilde{M} and \tilde{X} are simply connected, we deduce that \tilde{f} is a homotopy equivalence, so that $f : M \rightarrow X$ is also a homotopy equivalence. This completes the proof of Theorem 1 (modulo Theorem 4).