Surgery (Lecture 32)

April 14, 2011

Our goal today is to begin the proof of the following:

Theorem 1. Let X be a Poincare pair of dimension $n \geq 5$, ζ a stable PL bundle on X, and $f : M \to X$ a degree one normal map, where M is a PL manifold. Let $\sigma_f^\partial \in \Omega^\infty L^\partial q(X, \zeta_X)$ be the relative signature of f, and suppose we are given a path p from σ_f^∂ to the base point of $\Omega^\infty L^\partial q(X, \zeta_X)$. (We can identify such a path with a Lagrangian in the Poincare object representing σ_f^∂, which is well-defined up to bordism.) Then there exists a Δ^1-family of degree one normal maps $F : B \to X \times \Delta^1$, where B is a bordism from $M = F^{-1}(X \times \{0\})$ to a PL manifold $N = F^{-1}(X \times \{1\})$ such that F induces a homotopy equivalence $f' : N \to X$. Moreover, we can arrange that F determines a path from σ_f^∂ to $\sigma_f^{\partial'} = 0$ which is homotopic to p.

Remark 2. In the last lecture, we sketched the formulation of a more general version of Theorem 1, where we replace f by a Poincare pair $(X, \partial X)$ where ∂X is already a PL manifold. To simplify the discussion, we will restrict our attention to the case where $\partial X = \emptyset$, but the ideas introduced in this lecture generalize to the relative case.

To prove Theorem 1, we need a method for producing bordisms between PL manifolds. For this, we will use the method of surgery. Fix a PL manifold M of dimension n. Write $n = p + q + 1$. Let D^{p+1} and D^{q+1} denote PL disks of dimension $p + 1$ and $q + 1$, respectively. Let S^p and S^q denote their boundaries (spheres of dimension p and q, respectively).

Definition 3. A p-surgery datum on M is a PL embedding $\alpha : S^p \times D^{q+1} \to M$.

To a first approximation, a p-surgery datum α on M is given by an embedding of PL manifolds $\alpha_0 : S^p \to M$ (given by restricting α to the product of S^p with the center of D^{q+1}). To obtain a surgery datum from α_0, we must additionally specify that α_0 extends to a PL homeomorphism between $S^p \times D^{q+1}$ and a neighborhood of the image of α_0. Such a homeomorphism determines a smooth structure on M along the image of α_0, with respect to which α_0 is a smooth embedding with trivialized normal bundle. Conversely, suppose we are given an embedding $\alpha_0 : S^p \to M$ and a smoothing of M along the image of α_0, such that α_0 is a smooth map. Then α_0 has a normal bundle N_{α_0}, and there is a neighborhood of $N_{\alpha_0}(S^p)$ in M which is diffeomorphic to the unit sphere bundle of N_{α_0}. In particular, if N_{α_0} is trivial, we obtain a diffeomorphism (and therefore a PL homeomorphism) of a neighborhood of $\alpha_0(S^p)$ with $S^p \times D^{q+1}$. This argument shows that we can identify a p-surgery datum on M with three pieces of data:

(i) A PL embedding $\alpha_0 : S^p \to M$.

(ii) A smoothing of M along the image of α_0 (with respect to which α_0 is a smooth map).

(iii) A trivialization of the normal bundle to α_0 (as a vector bundle).

Construction 4. Let M be a PL manifold of dimension $n = p + q + 1$ and let $\alpha : S^p \times D^{q+1} \to M$ be a p-surgery datum. We let $B(\alpha)$ denote the polyhedron given by

$$(M \times [0,1]) \bigsqcup_{\{1\} \times S^p \times D^{q+1}} (D^{p+1} \times D^{q+1}).$$
Then \(B(\alpha) \) is a PL manifold with boundary, given by the disjoint union of \(M \times \{0\} \) and
\[
N = M - (S^p \times (D^{q+1})^\circ) \coprod_{S^p \times S^q} (D^{p+1} \times S^q).
\]

We refer to \(N \) as the PL manifold obtained from \(M \) via surgery along \(\alpha \), and to \(B(\alpha) \) as the trace of the surgery.

More informally: \(N \) is the manifold obtained from \(M \) by removing the interior of \(S^p \times D^{q+1} \) (thereby creating a manifold with boundary \(S^p \times S^q \)) and gluing on a copy of \(D^{p+1} \times S^q \).

Remark 5. Let \(N \) be a PL manifold obtained from surgery on a PL manifold \(M \) along a map \(\alpha : S^p \times D^{q+1} \hookrightarrow M \). Then there is an evident embedding \(\beta : D^{p+1} \times S^q \to N \), which is a \(q \)-surgery datum in \(N \). Performing surgery on \(N \) along \(\beta \) recovers the manifold \(M \).

We will be interested in using surgery to construct normal bordisms between normal maps to a Poincare complex. For this, we need a slight variation on Definition 3. Let \(M \) be a PL manifold, so that the stable normal bundle of \(M \) is classified by a map \(\chi : M \to \mathbb{Z} \times \text{BPL} \). If we are given a \(p \)-surgery datum \(\alpha : S^p \times D^{q+1} \to M \), then \(\chi \circ \alpha \) extends canonically to a map \(\gamma : D^{p+1} \times D^{q+1} \to \mathbb{Z} \times \text{BPL} \).

Suppose now that \(X \) is a space equipped with a stable PL bundle \(\zeta \), and that we are given a normal map \(f : M \to X \). Then \(\zeta \) is classified by a map \(\chi_X : X \to \mathbb{Z} \times \text{BPL} \), and the normal structure on \(f \) gives a homotopy \(h_0 : \chi \simeq \chi_X \circ f \).

Definition 6. In the situation above, a normal \(p \)-surgery datum on \(M \) consists of the following data:

(i) A \(p \)-surgery datum \(\alpha : S^p \times D^{q+1} \to M \).

(ii) A map \(\beta : D^{p+1} \times D^{q+1} \to X \) extending \(f \circ \alpha \).

(iii) A homotopy \(h \) from \(\chi_X \circ \beta \) to \(\gamma \), extending the homotopy determined by \(h \).

Given a normal \(p \)-surgery datum, we can use \(\alpha \) to construct a bordism \(B(\alpha) \) from \(M \) to a PL manifold \(N \), \(\beta \) to construct a map \(F : B(\alpha) \to X \) extending \(f : M \to X \), and \(h \) to endow \(F \) with the structure of a \(\Delta^1 \)-family of normal maps.

Remark 7. Let us think of a \(p \)-surgery datum on a PL manifold \(M \) as an embedding \(\alpha_0 : S^p \to M \), together with a choice of trivial normal bundle to \(\alpha_0 \). If \(f : M \to X \) is a degree one normal map, then to obtain a normal \(p \)-surgery datum we need to choose a nullhomotopy of the composite map \((f \circ \alpha_0) : S^p \to X \), which is compatible with the nullhomotopy of the map
\[
S^p \xrightarrow{\alpha_0} M \xrightarrow{f} X \to \mathbb{Z} \times \text{BPL}
\]
determined by the choice of trivial normal bundle.

Let us now see what surgery can do for us in low degrees. Assume that \(X \) is a Poincare space of dimension \(n \geq 5 \), \(\zeta \) a stable PL bundle on \(X \), and \(f : M \to X \) is a degree one normal map.

Let us begin by doing surgery in the case \(p = -1 \). In this case, \(S^p \) is empty and therefore a surgery datum \(\alpha : S^p \times D^{q+1} \to M \) is unique. To promote \(\alpha \) to a normal surgery datum, we need to choose a map \(\beta : D^{n+1} \to X \) (up to homotopy, this a point \(x \in X \)), together with a trivialization of \(\beta^* \zeta \). Unwinding the definitions, we see that \(B(\alpha) \) is the disjoint union \((M \times [0,1]) \coprod D^{n+1} \), regarded as a bordism from \(M \) to \(M \coprod S^n \). If we have chosen \(\beta \) and the trivialization of \(\beta^* \zeta \), then we can regard this as a normal bordism from \(f \) to a map \(M \coprod S^n \to X \), whose restriction to \(S^n \) is determined by \(\beta \). By performing surgeries of this type, we can always arrange that the map \(M \to X \) is surjective on connected components.

Now suppose that \(f : M \to X \) fails to be injective on connected components. Then we can choose two points \(x, y \in M \) belonging to different components of \(M \) and a path joining \(f(x) \) to \(f(y) \). Choosing small
disks around the points x and y, we obtain a 0-surgery datum $\alpha : S^0 \times D^n \hookrightarrow M$. A choice of path p from $f(x)$ to $f(y)$ determines the datum (ii) required by Definition 6. We cannot always extend α to a normal surgery datum: our choice of disks determines trivializations of the fibers $\xi_{f(x)}$ and $\xi_{f(y)}$, which may or may not extend to a trivialization of ζ over the path p. However, the obstruction is slight by virtue of the following (non-obvious!) fact:

Claim 8. The fundamental group $\pi_1(\mathbb{Z} \times \text{BPL})$ is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. In other words, every orientation-preserving PL automorphism of \mathbb{R}^n is isotopic to the identity, for $n \geq 0$.

In fact, more is true: the map $\pi_i(\mathbb{Z} \times \text{BO}) \to \pi_i(\mathbb{Z} \times \text{BPL})$ induces an isomorphism for $i \leq 6$ and a surjection when $i = 7$ (using smoothing theory, this is equivalent to the assertion that there are no exotic smooth structures on piecewise linear spheres of dimensions ≤ 6). In this lecture, we will need something much weaker: namely, that the above map is bijective for $i \leq 1$ and surjective for $i \leq 2$. Using smoothing theory, this is equivalent to the (reasonably obvious) claim that there are no exotic smooth structures on spheres of dimension ≤ 1.

In our situation, we cannot necessarily extend an arbitrary $\alpha : S^0 \times D^n \hookrightarrow M$ to a normal surgery datum. However, we always do so after modifying α by applying an orientation-reversing automorphism to one of the disks D^n. After making this modification, we obtain a normal bordism from M to a PL manifold with fewer connected components. Applying this procedure finitely many times, we may replace $f : M \to X$ by a degree one normal map which induces an isomorphism $\pi_0 M \to \pi_0 X$.

Let us now assume that X and M are connected, and choose a base point $x \in M$. Suppose that the map $\pi_1 M \to \pi_1 X$ is not surjective. Choose another point $y \in M$ and a path q from y to x. Choose any class γ in $\pi_1 X$, and a path p from $f(x)$ to $f(y)$ such that the loop composing p with $f(q)$ represents γ. Choosing small disks around x and y, we obtain a surgery datum $\alpha : S^0 \times D^n \hookrightarrow M$ as before. The path p supplies the datum (ii) required by Definition 6, and we can argue as before (modifying α if necessary) to obtain the datum (iii). Let N be obtained from M by normal surgery along α. Since $n \geq 3$, deleting small disks around x and y does not change the fundamental group of M. Using van Kampen’s theorem, we compute that $\pi_1 N$ is obtained from $\pi_1 M$ by freely adjoining an additional generator, and the map $\pi_1 N \to \pi_1 X$ carries this generator to γ (here we are being sloppy about base points here). Since X is a finite complex, its fundamental group is finitely generated. We may therefore perform this procedure finitely many times to reduce to the situation where the degree one normal map $f : M \to X$ induces a surjection $\pi_1 M \to \pi_1 X$.

Now suppose that $\pi_1 M \to \pi_1 X$ fails to be injective. Choose an element of $\pi_1 M$ whose image in $\pi_1 X$ is trivial. We can represent this element by a map $\alpha_0 : S^1 \to M$. Since the dimension of M is ≥ 3, a general position argument allows us to assume that α_0 is an embedding. The composite map $S^1 \to M \to X$ is nullhomotopic, so that the stable normal bundle of M is trivial in a neighborhood of α_0 and we may therefore assume that M is smooth in a neighborhood of α_0. The normal bundle to α_0 is stable trivial, hence orientable and therefore trivial. We may therefore extend α_0 to an embedding $\alpha : S^1 \times D^{n-1} \hookrightarrow M$. Choose a nullhomotopy of $f \circ \alpha$. As before, it is not clear that we can choose datum (iii) required by Definition 6: we encounter an obstruction in $\pi_2(\mathbb{Z} \times \text{BPL})$. However, since the map $\pi_2(\mathbb{Z} \times \text{BO}) \to \pi_2(\mathbb{Z} \times \text{BPL})$ is surjective, we can adjust our original embedding α (choosing a different trivialization of the normal bundle to α_0) to make this obstruction vanish. This allows us to perform a normal surgery on the manifold M, thereby obtaining a cobordant degree one normal map $f' : N \to X$. Since the dimension of M is ≥ 4, removing a neighborhood of $\alpha_0(S^1)$ does not change the fundamental group of M. Consequently, we can use van Kampen’s theorem to compute the fundamental group of N: it is obtained from the fundamental group of M by killing the normal subgroup generated by γ.

Since X is a finite complex, the fundamental group $\pi_1 X$ is finitely presented. Since $\pi_1 M$ is finitely generated, the surjective map $\pi_1 M \to \pi_1 X$ exhibits $\pi_1 X$ as the quotient of $\pi_1 M$ by the normal subgroup generated by finitely many elements of $\pi_1 M$. It follows that, after a finite number of applications of the above procedure, we may replace $f : M \to X$ by a degree one normal map which induces an isomorphism of fundamental groups.