Poincare Spaces and Spivak Fibrations (Lecture 26)

April 1, 2011

Let X be a topological space and \mathcal{C} an ∞-category. We let $\text{Shv}_{lc}(X; \mathcal{C})$ denote the ∞-category of maps from the Kan complex $\text{Sing}_\bullet(X)$ into \mathcal{C}. We will refer to $\text{Shv}_{lc}(X; \mathcal{C})$ as the ∞-category of locally constant \mathcal{C}-valued sheaves on X, or sometimes as the ∞-category of local systems of \mathcal{C}-valued sheaves on X. If X is a polyhedron with triangulation T, then we can identify $\text{Shv}_{lc}(X; \mathcal{C})$ with the full subcategory of $\text{Shv}_{\tau}(X; \mathcal{C})$ spanned by those functors which carry each inclusion $\tau \subseteq \tau'$ of simplices to an invertible morphism of \mathcal{C}.

Let $f : X \rightarrow Y$ be a map of topological spaces. Then f induces a pullback functor $f^* : \text{Shv}_{lc}(Y; \mathcal{C}) \rightarrow \text{Shv}_{lc}(X; \mathcal{C})$. Suppose that \mathcal{C} is the ∞-category of spectra. Then f^* preserves all limits and colimits, and therefore admits both a left adjoint $f_!$ and a right adjoint f_*. In the special case where Y is a point, we will denote the functors $f_!$ and f_* by $C_*(X; \bullet)$ and $C^*(X; \bullet)$, respectively. If X is a polyhedron with triangulation T, these are described by the formulas

$$C_*(X; \mathcal{F}) = \lim_{\tau} \mathcal{F}(\tau), \quad C^*(X; \mathcal{F}) = \lim_{\tau} \mathcal{F}(\tau).$$

If X is a finite polyhedron, we conclude that the construction $C^* : \text{Shv}_{lc}(X; \text{Sp}) \rightarrow \text{Sp}$ commutes with homotopy colimits.

Suppose now that X is connected with base point x. Then $\text{Shv}_{lc}(X; \text{Sp})$ can be identified with the ∞-category of modules over the A_{∞}-ring $R = \Sigma_\infty \Omega(X)$. Any functor $F : \text{LMod}_R \rightarrow \text{Sp}$ is determined by its value $F(R) \in \text{Sp}$, together with its right R-module structure. Indeed, the fact that F commutes with homotopy colimits implies that F is given by $F(M) \simeq F(R) \wedge_R M$. We can identify $F(R)$ with a local system ζ on X, so that F is given by the formula $F(M) = C_*(X; M \wedge \zeta)$. This description generalizes immediately to the case where X is not assumed to be connected:

Proposition 1. Let $F : \text{Shv}_{lc}(X; \text{Sp}) \rightarrow \text{Sp}$ be a functor which commutes with homotopy colimits. Then F is given by $F(\mathcal{F}) = C_*(\mathcal{F} \wedge \zeta)$, where ζ is a local system of spectra on X. Moreover, the local system ζ is determined uniquely up to equivalence.

In particular, if X is a finite polyhedron (or any space equivalent to a finite polyhedron) and $f : X \rightarrow *$ denotes the projection map, we have an equivalence of functors

$$f_*(\bullet) \simeq C_*(\bullet \wedge \zeta_X)$$

for some local system ζ_X on X.

Definition 2. We say that a finite polyhedron X is a Poincare space if ζ_X is a spherical fibration (that is, if each of the fibers $\zeta_X(x)$ is an invertible spectrum). In this case, we say that ζ_X is the Spivak normal fibration of X.

Remark 3. Let X be a finite polyhedron containing a point x. Let $i : \{x\} \rightarrow X$ denote the inclusion and $p : X \rightarrow *$ the projection map, so that $p \circ i$ is a homeomorphism. Then we have a homotopy equivalence of spectra

$$i^* \zeta_X \simeq (p \circ i)_! i^* \zeta_X \simeq p_!(i_! i^* \zeta_X) \simeq p_!(i_! S \wedge \zeta_X) \simeq C^*(X; i_! S).$$
In other words, the stalk \(\zeta_X(x) \) is given by taking global sections of the local system of spectra on \(X \) that assigns to each point \(y \in X \) the suspension spectra \(\Sigma^\infty P_{x,y} \), where \(P_{x,y} \) denotes the path space \(\{ p : [0,1] \to X : p(0) = x, p(1) = y \} \).

Remark 4. Let \(\mathcal{S} \) denote the constant local system on \(X \) with value the sphere spectrum, so we have a canonical map \(S \to C^*(X; \mathcal{S}) \simeq C_*(X; \mathcal{S} \wedge \zeta_X) \simeq C_*(X; \zeta_X) \). We can identify this map with a point of \(\Omega^\infty C_*(X; \zeta_X) \), which we will refer to as the fundamental class of \(X \) and denote by \([X]\).

The fundamental class determines the equivalence of functors \(C^*(X; \bullet) \simeq C_*(X; \bullet \wedge \zeta_X) \): it is given by

\[
C^*(X; \mathcal{F}) \simeq \text{Mor}(\mathcal{S}, \mathcal{F}) \to \text{Mor}(\zeta_X, \mathcal{F} \wedge \zeta_X) \to \text{Mor}(C_*(X; \zeta_X), C_*(X; \mathcal{F} \wedge \zeta_X)) \xrightarrow{[X]} C_*(X; \mathcal{F} \wedge \zeta_X).
\]

Example 5. Let \(X \) be a simply connected finite polyhedron. Then \(X \) is a Poincare space if and only if there exists a fundamental class \(\eta_X \in H_n(X; \mathbb{Z}) \) which induces cap product isomorphisms \(\phi_i : H^i(X; \mathbb{Z}) \to H_{n-i}(X; \mathbb{Z}) \). The “only if” direction is obvious: if \(X \) is a Poincare space, then \(\zeta_X \wedge \mathbb{Z} \) is necessarily equivalent to \(\Sigma^{-n} \mathbb{Z} \) (orientability is obvious, since \(X \) is simply connected) so we can take \(\eta_X \) to be the image of the fundamental class \([X]\); the desired result then follows from the equivalence

\[
C^*(X; \mathbb{Z}) \simeq C_*(X; \mathbb{Z} \wedge \zeta_X) \simeq C_*(X; \Sigma^{-n} \mathbb{Z}).
\]

The converse requires the simple connectivity of \(X \). Note that \(\eta_X \) induces a map of spectra \(C^*(X; \mathbb{Z}) \to \Sigma^{-n} \mathbb{Z} \), hence a map \(C_*(X; \mathbb{Z} \wedge \zeta_X) \to \Sigma^{-n} \mathbb{Z} \) which is adjoint to a map \(\theta : \mathbb{Z} \wedge \zeta_X \to \Sigma^{-n} \mathbb{Z} \). We claim that \(\theta \) is invertible (from which it will follow that each fiber of \(\zeta_X \) is equivalent to the invertible spectrum \(\Sigma^{-n} S \)). Since \(X \) is simply connected (and the fibers of \(\zeta_X \) are \(k \)-connective for \(k \ll 0 \)), it will suffice to show that \(\theta \) induces an equivalence after applying the functor \(C_* \). That is, we must show that the canonical map

\[
C^*(X; \mathbb{Z}) \simeq C_*(X; \mathbb{Z} \wedge \zeta_X) \to \Sigma^{-n} C_*(\mathbb{Z})
\]

is a homotopy equivalence. On the level of homotopy groups, this is precisely the condition that the maps \(\phi_i \) are isomorphisms.

Let us now depart from our previous convention and regard quadratic functors as covariant functors from a stable \(\infty \)-category \(\mathcal{C} \) to spectra. If \(R \) is an \(A_\infty \)-ring with involution, we have a quadratic functor \(Q^\mathcal{F} : \text{RMod}_R \to \text{Sp} \) given by

\[
Q^\mathcal{F}(M) = (M \wedge_R M)^{h\mathbb{S}_2},
\]

which restricts to a nondegenerate quadratic functor on \(\text{RMod}_R^{fp} \). If \(X \) is a space equipped with a spherical fibration \(\zeta \) and \(f : X \to * \) denotes the projection map, then we obtain a quadratic functor \(Q^\mathcal{F}_\zeta : \text{Shv}_{lc}(X; \text{RMod}_R) \to \text{Sp} \) given by the formula \(Q^\mathcal{F}_\zeta(\mathcal{F}) = C_*(X; \zeta \wedge Q^\mathcal{F}(\mathcal{F})) \), which is nondegenerate when restricted to the \(\infty \)-category of compact objects of \(\text{Shv}_{lc}(X; \text{RMod}_R) \).

Let \(\mathcal{R} \) denote the constant sheaf on \(X \) having the value \(R \). Given a map of spectra \(\eta : S \to C_*(X; \zeta) \), we obtain a map \(S \to C_*(X; \zeta \wedge R^{h\mathbb{S}_2}) \simeq Q^\mathcal{F}_\zeta(\mathcal{R}) \), which we will denote by \(q \). Then the pair \((\mathcal{R}, q)\) is a quadratic object of \(\text{Shv}_{lc}(X; \text{RMod}_R) \). Let \(B^\mathcal{F}_\zeta \) denote the polarization of \(Q^\mathcal{F}_\zeta \), given by the formula

\[
B^\mathcal{F}_\zeta(\mathcal{F}, \mathcal{F}') = C_*(X; \mathcal{F} \wedge_R \mathcal{F}' \wedge \zeta).
\]

If \(X \) is a Poincare space and \(\zeta = \zeta_X \) is its Spivak normal fibration, then we have a homotopy equivalence

\[
B^\mathcal{F}_\zeta(\mathcal{R}, \mathcal{F}) = C_*(X; \mathcal{R} \wedge_R \mathcal{F} \wedge \zeta) \simeq C_*(X; \mathcal{F} \wedge \zeta) \simeq C^*(X; \mathcal{F}) \simeq \text{Mor}(\mathcal{R}, \mathcal{F}).
\]

This tells us that \(\mathcal{R} \) is self-dual: that is, \((\mathcal{R}, q)\) is a Poincare object of \(\text{Shv}_{lc}(X; \text{RMod}_R) \). We therefore obtain an element \(\sigma^\mathcal{F}_\zeta \in \Omega^\infty L^{vs}(X, \zeta_X, R) \), called the visible symmetric signature of the Poincare complex \(X \).

For later use, we will need a slight generalization of the notion of a Poincare complex. Suppose we are given a map of finite spaces \(\partial X \to X \) (which, up to homotopy equivalence, we may as well suppose is given
by an inclusion between finite polyhedra). Given a local system of spectra \(\mathcal{F} \) on \(X \), we let \(\mathcal{F} \mid \partial X \) denote the pullback of \(\mathcal{F} \) to \(\partial X \), and form fiber sequences

\[
C_*(\partial X; \mathcal{F} \mid \partial X) \to C_*(X; \mathcal{F}) \to C_*(X, \partial X; \mathcal{F})
\]

\[
C^*(X, \partial X; \mathcal{F}) \to C^*(X; \mathcal{F}) \to C^*(\partial X; \mathcal{F} \mid \partial X).
\]

Arguing as above, we see that \(C^*(X, \partial X; \bullet) \) commutes with homotopy colimits and is therefore given by \(\mathcal{F} \mapsto C_*(X; \zeta_{(X, \partial X)} \wedge \mathcal{F}) \) for some local system \(\zeta_{(X, \partial X)} \). The equivalence between \(C^*(X, \partial X; \bullet) \) is determined by a fundamental class \([X] : S \to C_*(X, \partial X; \zeta_{(X, \partial X)}) \). Note that \([X]\) determines a composite map

\[
[S] : S \to C_*(X, \partial X; \zeta_{(X, \partial X)}) \to \Sigma C_*(X; \zeta_{(X, \partial X)} \mid \partial X) \cong C_*(\partial X; \Sigma \zeta_{(X, \partial X)} \mid \partial X).
\]

Definition 6. A pair of finite spaces \((X, \partial X)\) is a Poincare pair if the following conditions are satisfied:

1. The local system \(\zeta_{(X, \partial X)} \) defined above is a spherical fibration.
2. The map \([\partial X]\) is a fundamental class for \(\partial X \): that is, it induces a homotopy equivalence

\[
C^*(\partial X; \mathcal{F}) \to C_*(\partial X; (\Sigma \zeta_{(X, \partial X)} \mid \partial X) \wedge \mathcal{F})
\]

for every local system \(\mathcal{F} \) on \(\partial X \). (So that the Spivak normal fibration of \(\partial X \) is given by \(\Sigma \zeta_{(X, \partial X)} \mid \partial X \).)

Remark 7. Let \((X, \partial X)\) be a pair of finite spaces \(\mathcal{F} \) be a local system of spectra on \(X \). We have a commutative diagram of fiber sequences

\[
\begin{array}{ccc}
C^*(X, \partial X; \mathcal{F}) & \to & C^*(X; \mathcal{F}) \\
\downarrow & & \downarrow \\
C_*(X; \zeta_{(X, \partial X)} \wedge \mathcal{F}) & \to & C_*(X, \partial X; \zeta_{(X, \partial X)} \wedge \mathcal{F}) \to C_*(X; (\Sigma \zeta_{(X, \partial X)} \mid \partial X) \wedge \mathcal{F})
\end{array}
\]

where the vertical maps are given by cap product with \([X]\) and \([\partial X]\). The left vertical map is a homotopy equivalence by construction, and the right vertical map is a homotopy equivalence when \((X, \partial X)\) is a Poincare pair. It follows that if \((X, \partial X)\) is a Poincare pair, then the middle map is also a homotopy equivalence: that is, the cap product map

\[
C^*(X; \mathcal{F}) \to C_*(X, \partial X; \zeta_{(X, \partial X)} \wedge \mathcal{F})
\]

is a homotopy equivalence.

Suppose that \(i : \partial X \to X \), and let \(R \) be an \(\mathbb{A}_\infty \)-ring with involution. We have a visible symmetric signature \(\sigma^\wedge_{\partial X} \in L^\wedge(\partial X, \zeta_{\partial X}, R) \), given by \((\mathcal{R}, q)\). Then \(q \) determines a symmetric bilinear form \(q_\theta \) on the object \(i^*R \in \text{Shv}_{\mathbf{lc}}(X; \text{RMod}_R) \) with respect to the quadratic functor \(Q_{\Sigma \zeta_{(X, \partial X)}} \). We have a canonical map \(i^*R \to R \), and a fiber sequence

\[
C_*(X, \partial X; \zeta_{(X, \partial X)} \wedge \mathcal{R}^{h\Sigma_{\zeta_{(X, \partial X)}}}) \to C_*(X; \Sigma \zeta_{(X, \partial X)} \wedge i^*R^{h\Sigma_{\zeta_{(X, \partial X)}}}) \to C_*(X; \Sigma \zeta_{(X, \partial X)} \wedge \mathcal{R}^{h\Sigma_{\zeta_{(X, \partial X)}}}).
\]

Consequently, the fundamental class \([X]\) provides a nullhomotopy of the image of \(q_\theta \) in \(Q_{\Sigma \zeta_{(X, \partial X)}}(R) \). This nullhomotopy exhibits \(R \) as a Lagrangian for the Poincare object \((i^*R; q_\theta)\). In other words, it gives a canonical lifting of \(\sigma^\wedge_{\partial X} \) to the homotopy fiber of the map

\[
L^\wedge(\partial X, \zeta_{\partial X}, R) \to L^\wedge(X, \Sigma \zeta_{(X, \partial X)}, R).
\]

Let us denote this lifting by \(\sigma^\wedge_{X} \). We will refer to it as the visible symmetric signature of \(X \) (or the visible symmetric signature of the Poincare pair \((X, \partial X)\)).
Notation 8. Let $f : Y \to X$ be a map of spaces and let ζ be a spherical fibration on X. We let $L^v s(X, Y, \zeta, R)$ denote the homotopy cofiber of the map

$$L^v s(Y, f^* \zeta, R) \to L^v s(X, \zeta, R).$$

Equivalently $L^v s(X, Y, \zeta, R)$ is the homotopy fiber of the map

$$L^v s(Y, f^* \Sigma \zeta, R) \to L^v s(X, \Sigma \zeta, R).$$

The upshot of the above discussion is that if $(X, \partial X)$ is a Poincare pair, we can identify $\sigma^v s_X$ with a point in the 0th space of $L^v s(X, \partial X, \zeta_{(X, \partial X)}, R)$. When $\partial X = \emptyset$, this specializes to the definition of the visible symmetric signature of a Poincare space described earlier.