In the last lecture, we introduced the \(L^\bullet(X, \zeta, R) \) and \(L^\circ(X, \zeta, R) \), where \(R \) is an \(A_\infty \)-ring with involution, \(X \) is a finite polyhedron, and \(\zeta \) is a spherical fibration on \(X \). When \(\zeta \) is trivial, these spectra are given simply by \(X \wedge L^\bullet(R) \) and \(X \wedge L^\circ(R) \), respectively. In general, they depend on the spherical fibration \(\zeta \). However, our excision argument generalizes to show that \(L^\bullet(X, \zeta, R) \) is given by the homotopy colimit
\[
\lim_{\tau \in T} L(LMod_{fp}^R, \zeta(\tau) \wedge Q^0)
\]
where \(T \) denotes any triangulation of \(X \). In other words, the homotopy groups of \(L^\bullet(X, \zeta, R) \) are given by the homology of \(X \) with coefficients in a local system of spectra, given by \((x \in X) \mapsto L(LMod_{fp}^R, \zeta(x) \wedge Q^0) \).

This raises the following general question:

Question 1. Let \(\mathcal{C} \) be a stable \(\infty \)-category equipped with a nondegenerate functor \(Q \), and let \(E \) be an invertible spectrum. What is the relationship between the \(L \)-theory spectra \(L(\mathcal{C}, Q) \) and \(L(\mathcal{C}, E \wedge Q) \)?

In the situation of Question 1, we can write \(E \simeq \Sigma^{-n} \) for some integer \(n \). We have seen that there is a canonical isomorphism \(L_k(\mathcal{C}, \Omega^n Q) = L_{k+n}(\mathcal{C}, Q) \), suggesting that we should have an equivalence of \(L \)-theory spectra \(L(\mathcal{C}, \Omega^n Q) \simeq \Omega^n L(\mathcal{C}, Q) \). In other words, we have a homotopy equivalence
\[
\theta_E : L(\mathcal{C}, E \wedge Q) \simeq E \wedge L(\mathcal{C}, Q).
\]

For our purposes, we need to know this not just for an individual invertible spectrum \(E \), but in the case where \(E \) ranges over the fibers of some spherical fibration. It is therefore important that our analysis be functorial with respect to automorphisms of \(E \). In fact, it is not possible to choose \(\theta_E \) to be functorial with respect to all automorphisms of \(E \). However, we will show that it can be chosen to depend naturally on automorphisms which are of geometric origin.

Definition 2. Let \(M \) be PL manifold, and let \(S \) denote the local system of spectra on \(M \) taking the constant value \(S \) (where \(S \) is the sphere spectrum). The Verdier dual \(\mathbb{D}(S) \) is a spherical fibration over \(M \). We will denote the inverse of this spherical fibration by \(\zeta_M \). We refer to \(\zeta_M \) as the normal spherical fibration of \(M \).

Unwinding the definitions, it can be described by the formula
\[
\zeta_M(x) = (\Sigma^\infty (M/M - \{x\}))^{-1}.
\]

There is a canonical map of spectra \(S \to \Gamma(M; \mathbb{S}) \). If \(M \) is compact, this dualizes to give a map
\[
\Gamma(M; \mathbb{D}S) \simeq \mathbb{D}\Gamma(M; S) \to S.
\]

This map gives a point in the zeroth space of the spectrum
\[
\text{Mor}_{Sp}(\lim_{\tau \in T} \mathbb{D}(S)(\tau), S) \simeq \lim_{\tau \in T} \zeta_M(\tau)
\]
where \(T \) denotes some triangulation of \(M \). We will denote this point by \([M]\) and refer to it as the fundamental class of \(M \).
More generally, if \(M \) is a PL manifold with boundary, we let \(\zeta_M \) denote the local system of spectra on \(M \) obtained by extending the normal spherical fibration from the interior of \(M \) (note that the interior of \(M \) is homotopy equivalent to \(M \), so there exists an essentially unique extension). In this case, we have a fundamental class

\[
[M] \in \Omega^\infty(\lim_{\tau \in \mathcal{T}} \zeta_M(\tau) \cup 0 \quad \text{if } \tau \notin \partial M \\
0 \quad \text{otherwise.}
\]

Let us now fix a PL manifold with boundary \(M \). Let \(\mathcal{C} \) be a stable \(\infty \)-category equipped with a nondegenerate quadratic functor \(Q \). For each triangulation \(T \) of \(M \), let

\[
Q_{\zeta_M, T} : \text{Shv}_T(M, \partial M; \mathcal{C})^{\text{op}} \to \text{Sp}
\]

be given by the formula

\[
\lim_{\tau \in \mathcal{T}} \left\{ Q_{\zeta_M, T}(\mathcal{F}(\tau)) \cup \zeta_M(\tau) \quad \text{if } \tau \notin \partial M \\
0 \quad \text{otherwise.}
\right.
\]

Let \(C \in \mathcal{C} \) be an object, and let \(C \) denote the constant sheaf on \(M \) with taking the value \(C \) (which we will identify with its image in \(\text{Shv}_T(M, \partial M; \mathcal{C}) \)). We then obtain a homotopy equivalence

\[
Q_{\zeta_M, T}(C) \simeq \lim_{\tau \in \mathcal{T}} \left\{ \zeta_M(\tau) \quad \text{if } \tau \notin \partial M \\
0 \quad \text{otherwise.}
\right.
\]

In particular, the fundamental class \([M]\) determines a map

\[
Q(C) \to Q_{\zeta_M, T}(C),
\]

which we will denote by \(q \mapsto q[M] \). This construction carries Poincare objects to Poincare objects, and induces a map of \(L \)-theory spectra

\[
\Phi : L(\mathcal{C}, Q) \to L(\text{Shv}_{\text{const}}(M, \partial M; \mathcal{C}); Q_{\zeta_M})
\]

(where \(Q_{\zeta_M} \) denotes the amalgamation of the quadratic functors \(Q_{\zeta_M, T} \) where \(T \) ranges over all triangulations of \(M \)).

Example 3. Let \(M \) be a piecewise linear disk. For every point \(x \) in the interior of \(M \), we have a canonical homotopy equivalence of pairs \((M, \partial M) \to (M, M - \{x\}) \). Consequently, \(\zeta_M \) is canonically equivalent to the constant sheaf taking the value \(E \), where \(E^{-1} = \Sigma^\infty(M/\partial M) \). It follows that \(L(\text{Shv}_{\text{const}}(M, \partial M; \mathcal{C}), Q\zeta) \) is given by \((M, \partial M) \land L(\mathcal{C}, E \land Q) \simeq E^{-1} \land L(\mathcal{C}, E \land Q)\). We may therefore identify \(\Phi \) with a map of spectra \(E \land L(\mathcal{C}, Q) \to L(\mathcal{C}, E \land Q) \).

Suppose \(M \simeq \Delta^n \). Then \(\Phi \) determines maps \(L_{k+n}(\mathcal{C}, Q) \to L_k(\mathcal{C}, \Omega^n Q) \), which can be identified with the shift isomorphisms defined earlier. It follows that \(\Phi \) is a homotopy equivalence whenever \(M \) is a piecewise linear disk.

The construction of \(\Phi \) is functorial with respect to piecewise linear homeomorphisms of the PL manifold \(M \).

Let us now introduce some terminology to describe the situation more systematically.

Let \(X \) be a polyhedron. A **closed \(n \)-disk bundle** over \(X \) is a map of polyhedra \(q : D \to X \) such that every point \(x \in X \) has an open neighborhood \(U \) for which there is a PL homeomorphism \(q^{-1}U \simeq U \times \Delta^n \) (which commutes with the projection to \(U \)).

There is a canonical bijection between isomorphism classes of closed \(n \)-disk bundles over \(X \) and homotopy classes of maps \(X \to B \text{Disk}(n) \), where \(B \text{Disk}(n) \) denotes the classifying space of the (simplicial) group \(\text{Disk}(n) \) of PL homeomorphisms of \(\Delta^n \).

The disjoint union \(\coprod_n B \text{Disk}(n) \) is equipped with a multiplication which is associative up to coherent homotopy, classifying the formation of products of closed \(n \)-disk bundles. We can describe the group completion of \(\coprod_n B \text{Disk}(n) \) as a product \(\mathbb{Z} \times \text{BPL} \), where \(\text{BPL} \) is the direct limit \(\lim_{\tau n} B \text{Disk}(n) \).
Let Pic(S) denote the classifying space for invertible spectra (so that homotopy classes of maps $X \to \text{Pic}(S)$ correspond to equivalence classes of spherical fibrations over X). Every closed disk bundle $q : D \to X$ has an associated spherical fibration, given by $x \mapsto \Sigma^\infty(D_x/\partial D_x)$. This construction determines a map $\coprod_n B\text{Disk}(n) \to \text{Pic}(S)$, which is multiplicative up to coherent homotopy and therefore extends to a map $\mathbb{Z} \times \text{BPL} \to \text{Pic}(S)$.

Fix (\mathcal{E}, Q) as above. Over the space Pic(S), we have two local systems of spectra: one given by the formula $E \mapsto L(\mathcal{E}, E \wedge Q)$ and one given by the formula $E \mapsto E \wedge L(\mathcal{E}, Q)$. The above analysis implies that these two local systems are canonically equivalent when restricted to $\mathbb{Z} \times \text{BPL}$. This proves the following:

Proposition 4. Let X be a finite polyhedron with triangulation T, \mathcal{E} a stable ∞-category equipped with a nondegenerate quadratic functor Q, and ζ a spherical fibration on X, classified by a map $X \to \text{Pic}(S)$. Suppose that this classifying map factors through $\mathbb{Z} \times \text{BPL}$ (that is, that the spherical fibration ζ arises from a closed disk bundle, at least stably). Then there is a homotopy equivalence (depending canonically on the factorization)

$$L(\text{Shv}_{\text{const}}(X; \mathcal{E}), Q_\zeta) \simeq \lim_{\tau \in T} \zeta(\tau) \wedge L(\mathcal{E}, Q).$$

We can also make the analysis of the preceding discussion read in a different way. Let us suppose that $\mathcal{E} = \mathcal{D}^{\text{fp}}(\mathbb{Z})$ is the ∞-category of perfect complexes of \mathbb{Z}-modules, and let Q be either Q^a or Q^s. Then Q is a spectrum valued functor which factors through the ∞-category of \mathbb{Z}-module spectra. It follows that for every spectrum E, we can write $E \wedge Q \simeq (E \wedge \mathbb{Z}) \wedge Q$, so that $E \wedge Q$ depends only on the generalized Eilenberg-MacLane spectrum $E \wedge \mathbb{Z}$. Let ζ be a spherical fibration on a polyhedron X, and suppose that ζ assigns to each point $x \in X$ a spectrum $\zeta(x)$ which is homotopy equivalent to $\Sigma^n S$. Suppose further that ζ is orientable. A choice of orientation determines a canonical homotopy equivalence of each $\zeta(x) \wedge \mathbb{Z}$ with $\Sigma^n \mathbb{Z}$, and therefore a natural isomorphism $Q_\zeta \simeq \Sigma^n Q$. It follows that we obtain a canonical homotopy equivalence

$$\lim_{\tau \in T} \zeta(\tau) \wedge L(\mathcal{E}, Q) \simeq L(\text{Shv}_{\text{const}}(X; \mathcal{E}), Q_\zeta) \simeq L(\text{Shv}_{\text{const}}(X; \mathcal{E}), Q, \Sigma^n Q) \simeq \Sigma^n L(\text{Shv}_{\text{const}}(X; \mathcal{E}), Q) \simeq \Sigma^n (X \wedge L(\mathcal{E}, Q)).$$

This proves:

Proposition 5. If ζ is an oriented spherical fibration (of dimension n) on X classified by a map $X \to \text{Pic}(S)$ which factors through $\mathbb{Z} \times \text{BPL}$, then we have homotopy equivalences (depending canonically on the choice of factorization)

$$\lim_{\tau \in T} \zeta(\tau) \wedge L^a(\mathbb{Z}) \simeq \Sigma^n (X \wedge L^a(\mathbb{Z}))$$

$$\lim_{\tau \in T} \zeta(\tau) \wedge L^s(\mathbb{Z}) \simeq \Sigma^n (X \wedge L^s(\mathbb{Z}))$$

Remark 6. Proposition 5 can be interpreted as saying that every orientable PL bundle is oriented with respect to the ring spectrum L^s. We will return to this point in the next lecture.