Existence of Borel Reductions II (Lecture 15)

March 9, 2014

Throughout this lecture, we let k be an algebraically closed field, X an algebraic curve over k, G a smooth affine group scheme over X, G_0 the generic fiber of G, $B_0 \subseteq B$ the scheme-theoretic closure of B_0 in G. Let \mathcal{P} be a G-bundle on X and let $\pi : \mathcal{P}/B \to X$ be the projection map. Our goal is to prove the following result which was needed in the previous lecture:

Theorem 1. Let \mathcal{P} be a G-bundle on X. Then there exists a section s of the projection map $\pi : \mathcal{P}/B \to X$ such that $H^1(X; s^*T_\pi) \simeq 0$.

We will prove Theorem 1 under the assumption that the generic fiber G_0 is split reductive. The statement also holds under the assumption that G_0 is semisimple and simply connected, but requires a more complicated argument.

Let G' be the unique split reductive algebraic group over k such that there is an isomorphism $\alpha : \text{Spec} K_X \times_{\text{Spec} k} G' \simeq G_0$ and let B' be a Borel subgroup of G'. Since all Borel subgroups of G_0 are conjugate, we may assume without loss of generality that the isomorphism α carries $\text{Spec} K_X \times_{\text{Spec} k} B'$ to B_0. We may therefore choose a dense open subset $U \subseteq X$ such that α extends to an isomorphism $G' \times_{\text{Spec} k} U \simeq G \times_X U$ carrying $B' \times_{\text{Spec} k} U$ to $B \times_X U$.

In the last lecture, we showed that \mathcal{P} admits a B-reduction, which we can identify with a section s_0 of the projection map $\pi : \mathcal{P}/B \to X$. Let \mathcal{Q} denote the associated B-bundle on X, so that \mathcal{Q} is trivial at the generic point of X. Shrinking the open set U, we may assume that $\mathcal{Q}|_U$ is trivial. It follows that α determines an isomorphism
\[
\beta : G'/B' \times_{\text{Spec} k} U \simeq \mathcal{P}/B \times_X U,
\]
which carries the “zero section” of the projection map $G'/B' \times_{\text{Spec} k} U \to U$ to the map $s_0|_U$.

We would now like to extend β to a map
\[
\overline{\beta} : G'/B' \times_{\text{Spec} k} X \to \mathcal{P}/B.
\]
Unfortunately, such an extension need not exist. However, we can always find such an extension after suitably “blowing-up” the variety $G'/B' \times_{\text{Spec} k} X$.

Construction 2 (Dilation). Let Y be a quasi-projective k-scheme equipped with a smooth map $f : Y \to X$, and let $y \in Y(k)$ be a point having image $x \in X(k)$. Let \mathcal{I}_y denote the ideal sheaf of y in Y. Let A_y denote the direct limit
\[
\lim_{\rightarrow} \mathcal{I}_y^m \otimes_{O_Y} f^* O_X(mx).
\]
Then A_y is a quasi-coherent sheaf of algebras on Y, which determines a map of affine schemes $D_y(Y) \to Y$.

We will refer to $D_y(Y)$ as the dilation of Y at the point y.

Remark 3. We can describe $D_y(Y)$ as the scheme obtained by first blowing up Y at the point y, and then removing the closed subscheme obtained by blowing up $Y \times_X \{x\}$ at the point y.

Remark 4. Suppose that Y is smooth over X. Then $D_y(Y)$ is also smooth over X. Moreover, if $g : D_y(Y) \to Y$ denotes the projection map, then we have a canonical isomorphism $T_{D_y(Y)/X} \simeq g^* T_Y/X(\{x\})$.
If \(Y = X \), then \(D_y(Y) \simeq Y \) for any point \(y \in Y(k) \). By functoriality, we see that if \(s : X \to Y \) is a section of the projection map \(f : Y \to X \) which passes through the point \(Y \), then \(s \) lifts (uniquely!) to a section \(\tilde{s} : X \to D_y(Y) \) of the projection map \(D_y(Y) \to X \).

Suppose that \(f_0 : Y_0 \to X \) is a map equipped with a section \(s_0 \), and that we are given a finite sequence of points \(x_1, \ldots, x_m \in X(k) \) (which need not be distinct). We can then define sequence of \(X \)-schemes \(f_i : Y_i \to X \) and section \(s_i : X \to Y_i \) by the formula \(Y_i = D_{s_{i-1}}(x_i)Y \), with \(s_i \) the unique lift of \(s_{i-1} \). The scheme \(Y_m \) depends only on the divisor \(D = x_1 + \cdots + x_m \) and the section \(s_0 \). In this case, we will say that \(Y_m \) is obtained from \(Y \) by dilatation along \(s_0(D) \).

Warning 5. This is an abuse of terminology: the scheme \(Y_m \) depends not only on the set \(s_0(D) \), but also on the section \(s_0 \) and the divisor \(D \).

Remark 6. In the situation above, suppose we are given another section \(s : X \to Y_0 \) of the map \(f_0 \). If the sections \(s \) and \(s' \) agree on the divisor \(D \), then \(s \) can be lifted to a map \(\tilde{s} : X \to Y_m \).

We will need the following algebra-geometric fact:

Proposition 7. Let \(f : Y \to X \) be a map of integral \(k \)-schemes equipped with a section \(h \), let \(Z \) be a quasi-projective \(k \)-scheme, let \(U \subseteq X \) be a dense open set, and suppose that we are given a map \(\beta : U \times_X Y \to Z \) such that \(\beta \circ h|_U \) can be extended to a map \(X \to Z \).

Then there exists an effective divisor \(D \subseteq X \) supported in \(X \setminus U \) such that \(\beta \) factors as a composition

\[
U \times_X Y \hookrightarrow M \xrightarrow{\tilde{\beta}} Z,
\]

where \(M \) denotes the scheme obtained from \(Y \) by dilatation along \(h(D) \).

Let us now apply Proposition 7 to the case where \(Y = G'/B' \times_{\text{Spec} k} X \), \(Z = \mathcal{P}/B \), \(\beta \) is our isomorphism \(G'/B' \times_{\text{Spec} k} U \simeq \mathcal{P}/B \times_X U \), and \(h \) is the zero section of the projection map \(G'/B' \times_{\text{Spec} k} X \to X \). It follows that there exists an effective divisor \(D \subseteq X \) supported in \(X \setminus U \) and a commutative diagram

\[
\begin{array}{ccc}
\phi & \rightarrow & M \\
G'/B' \times_{\text{Spec} k} X & \xrightarrow{\beta} & \mathcal{P}/B, \\
\end{array}
\]

where \(M \) is obtained from \((G'/B') \times_{\text{Spec} k} X \) by dilatation along \(h(D) \).

Let \(h' \) be any section of the projection map \((G'/B') \times_{\text{Spec} k} X \) which agrees with \(h \) on the divisor \(D \). Then \(h' \) lifts (uniquely) to a map \(\overline{h}' : X \to M \), so \(\overline{\beta} \circ \overline{h}' : X \to \mathcal{P}/B \) determines a \(B \)-reduction of \(\mathcal{P} \). Moreover, we have a map of vector bundles

\[
\overline{h}'^* T_{M/X} \to (\overline{\beta} h')^* T_\pi
\]

on \(X \) which is an isomorphism over the open set \(U \), and therefore induces a surjection

\[
H^1(X; \overline{h}'^* T_{M/X}) \to H^1(X; (\overline{\beta} h')^* T_\pi).
\]

Let \(\psi : (G'/B') \times_{\text{Spec} k} X \to X \) denote the projection map, and let \(T_\psi \) denote the relative tangent bundle of \(\psi \). Applying Remark 4 repeatedly, we obtain an isomorphism \(T_{M/X} \simeq T_\psi(-D) \), so that

\[
H^1(X; \overline{h}'^* T_{M/X}) \simeq H^1(X; (h'^* T_\psi)(-D)).
\]

Note that \(h' \) can be identified with a map \(g : X \to G'/B' \), and \(h'^* T_\psi \) with the pullback \(g^* T_{G'/B'} \), where \(T_{G'/B'} \) denotes the tangent bundle to the flag variety \(G'/B' \). To complete the proof of Theorem 1, it will suffice to prove the following:
Theorem 8. Let D be an arbitrary effective divisor in X. Then there exists a map $g : X \to G'/B'$ such that $g|_D$ is constant and the cohomology group $H^1(X; g^*T_{(G'/B')}(-D))$ vanishes.

Fix a maximal torus $T' \subseteq B'$. Let $\Lambda^* = \text{Hom}(T', G_m)$ denote the character lattice of T_0, and let $\Lambda_* = \text{Hom}(G_m, T')$ be its cocharacter lattice. Every element $\lambda \in \Lambda^*$ determines a group homomorphism $B' \to G_m$, which determines an equivariant line bundle \mathcal{L}_λ on the flag variety G'/B'. If $g : X \to G'/B'$ is an arbitrary map, then the function $\lambda \mapsto \deg(g^*\mathcal{L}_\lambda)$ can be regarded as an additive map from $X^*(T_0)$ to \mathbb{Z}, which we can identify with an element of $X_*(T_0)$. We will refer to element as the degree of g and denote it by $\deg(g)$.

Let Φ_- denote the set of negative roots of G' with respect to (B', T'): that is, the subset of Λ^* consisting of characters which appear as roots of G' but not of the Borel subgroup B'. Unwinding the definitions, we see that the tangent bundle $T_{G'/B'}$ admits a filtration whose successive quotients are the line bundles $\{\mathcal{L}_\lambda\}_{\lambda \in \Phi_-}$. Consequently, to prove the vanishing of $H^1(X; g^*T_{(G'/B')}(-D))$, it will suffice to prove the vanishing of $H^1(X; (g^*\mathcal{L}_\lambda)(-D))$ for $\lambda \in \Phi_-$. By the Riemann-Roch theorem, this vanishing is automatic provided that $\deg(\mathcal{L}_\lambda) > 2g - 2 + d$, where g is the genus of the curve X and d is the degree of the divisor D. We are therefore reduced to proving the following:

Theorem 9. Let D be an arbitrary effective divisor in X and let n be a positive integer. Then there exists a map $g : X \to G'/B'$ such that $g|_D$ vanishes, and $(\deg(g), \lambda) \geq n$ for $\lambda \in \Phi_-$.

Choose any map $X \to \mathbb{P}^1$ which has degree $\geq n$ and is constant on the divisor D. Then any composite map $X \to \mathbb{P}^1 \xrightarrow{\phi} G'/B'$ is constant on D and can therefore (after translating by a point of G') be assumed to vanish on D. We are therefore reduced to proving:

Theorem 10. There exists a map $g : \mathbb{P}^1 \to G'/B'$ such that $\deg(g)$ is strictly antidominant: that is, $\langle \deg(g), \lambda \rangle > 0$ for $\lambda \in \Phi_-$.

Example 11. When $G' = \text{SL}_2$, Theorem 10 asserts that there exists a map from \mathbb{P}^1 to itself of positive degree.

Example 12. Let V be the standard representation of SL_2. Then $\text{Sym}^{n-1}(V)$ is an n-dimensional representation of SL_2, given by a map $\text{SL}_2 \to \text{SL}_n$. This map carries a Borel subgroup of SL_2 into a Borel subgroup of $G' = \text{SL}_n$, and therefore induces a map of flag varieties $g : \mathbb{P}^1 \to G'/B'$. An easy calculation shows that $\langle \deg(g), \lambda \rangle = 2$ for each negative simple root λ of G', so that g satisfies the requirements of Theorem 10.

If the field k has characteristic zero, then the argument of Example 12 can be generalized by consider a “principal SL_2” in the group G'. For a general argument which works in positive characteristic, we refer the reader to [1].

References

3