Recall that finite polyhedra X and Y are concordant if there is a piecewise-linear fibration $q : E \to [0,1]$ with $X \simeq q^{-1}\{0\}$ and $Y \simeq q^{-1}\{1\}$. In the last lecture, we asserted that X and Y are simply homotopy equivalent if and only if they are concordant, and proved the "if" direction. Our goal in this lecture is to use this fact as a starting point for the study of “higher” simple homotopy theory, following ideas of Hatcher.

For any finite polyhedron B, we can contemplate piecewise-linear fibrations $q : E \to B$ (where E is also a finite polyhedron). Our first goal is to construct a universal example of such a fibration, so that the base B can be regarded as a classifying space for PL fibrations. It is not clear that such a classifying space exists in the setting of finite polyhedra, but we can give an almost tautological construction of one in the setting of simplicial sets.

Definition 1. For each integer n, let Δ^n denote the topological simplex of dimension n and let M_n denote the set of all finite polyhedra $E \subseteq \Delta^n \times \mathbb{R}^\infty$ for which the projection map $E \to \Delta^n$ is a fibration.

Note that for any linear map of simplices $\alpha : \Delta^m \to \Delta^n$, the construction $E \mapsto E \times \Delta^m \Delta^n$ defines a map of sets $\alpha^* : M_n \to M_m$. In particular, we can regard the construction $[n] \mapsto M_n$ as a simplicial set, which we will denote by M.

Before we analyze the simplicial set M, we need a few general facts about the relationship between polyhedra and simplicial sets.

Remark 2. Let K_0, K_1, and K_{01} be polyhedra, and suppose we are given piecewise linear embeddings

$$K_0 \xleftarrow{i_0} K_{01} \xrightarrow{i_1} K_1.$$

Then the pushout $K_0 \amalg_{K_{01}} K_1$ exists in the category of polyhedra: that is, we can regard endow $K_0 \amalg_{K_{01}} K_1$ with the structure of a polyhedron, where a map $K_0 \amalg_{K_{01}} K_1 \to L$ is piecewise linear if and only if its restriction to K_0 and K_1 is piecewise linear.

Beware that this need not be true if i_0 is not an embedding, even if i_1 is an embedding. This is often a technical nuisance.

Example 3. Let X be a finite simplicial set. We say that X is nonsingular if every simplex $\sigma : \Delta^n \to X$ is either degenerate (meaning that it factors through Δ^m for $m < n$) or is a monomorphism of simplicial sets (in particular, all the faces of σ are again nondegenerate).

For any nonsingular finite simplicial set X, the geometric realization $|X|$ can be regarded as a finite polyhedron. More precisely, there is a unique PL structure on $|X|$ having the property that for every nondegenerate n-simplex of X, the associated map $\Delta^n \to |X|$ is piecewise linear (this follows by invoking Remark 2 repeatedly).

In what follows, we will often not distinguish between a (finite nonsingular) simplicial set X and the polyhedron $|X|$. For example, we use the symbol Δ^n to denote both the n-simplex as a simplicial set and the topological n-simplex, and apply similar considerations to the boundary $\partial \Delta^n$ and the horns $\Lambda^n_i \subseteq \Delta^n$.

We will also need the following technical fact, whose proof we omit (see Lemma 2.7.12 of [1]):

$$\text{...}$$
Proposition 4. Let $q : E \to B$ be a map of finite polyhedra. The following conditions are equivalent:

1. The map q is a fibration.

2. For every triangulation of B and every simplex σ of the triangulation, the induced map $E \times_B \sigma \to \sigma$ is a fibration.

3. There exists a triangulation of B such that, for every simplex σ of the triangulation, the induced map $E \times_B \sigma \to \sigma$ is a fibration.

Corollary 5. Let B be a finite nonsingular simplicial set. Then $\text{Hom}(B, \mathcal{M})$ can be identified with the set of finite polyhedra $E \subseteq |B| \times \mathbb{R}^\infty$ for which the projection map $E \to |B|$ is a fibration.

Proof. The geometric realization $|B|$ admits a triangulation for which each simplex is contained in the image of some simplex of B (beware that the nondegenerate simplices of B do not generally themselves determine a triangulation of $|B|$, unless one is liberal with the meaning of the word “triangulation”).

Corollary 6. The simplicial set \mathcal{M} is a Kan complex.

Proof. Suppose we are given a map $f_0 : \Lambda^n_i \to \mathcal{M}$, given by a polyhedron $E \subseteq |\Lambda^n_i| \times \mathbb{R}^\infty$ for which the projection $E \to |\Lambda^n_i|$ is a fibration. Choose a piecewise linear retraction $r : |\Delta^n| \to |\Lambda^n_i|$, and define $E' = E \times_{|\Lambda^n_i|} |\Delta^n|$. Then E' can be identified with a map $f : \Delta^n \to \mathcal{M}$ extending f_0.

We next investigate the role of the Kan complex \mathcal{M} as a “classifying space.”

Exercise 7. Let B be a finite polyhedron. Suppose we are given fibrations of finite polyhedra $f : X \to B$, $g : Y \to B$. We will say that f and g are concordant if there exists a fibration of finite polyhedra $h : Z \to B \times [0,1]$ for which the inverse image of $B \times \{0\}$ is isomorphic to X and the inverse image of $B \times \{1\}$ is isomorphic to Y. Show that concordance is an equivalence relation.

Let B be a finite nonsingular simplicial set. Any map $f : B \to \mathcal{M}$ determines a fibration of finite polyhedra $E_f \to |B|$, and any homotopy between maps $f, g : |B| \to \mathcal{M}$ determines a concordance from E_f to E_g. We therefore obtain a well-defined map from the set $[B, \mathcal{M}]$ of homotopy classes of maps from B into \mathcal{M} to the set of concordance classes of fibrations over $|B|$.

Proposition 8. This map is bijective.

Proof. To prove surjectivity, it suffices to note that for any map of finite polyhedra $X \to |B|$, we can choose a compatible PL embedding of X into $|B| \times \mathbb{R}^\infty$.

To prove injectivity, it suffices to show that if $X \subseteq |B| \times \mathbb{R}^\infty$ and $Y \subseteq |B| \times \mathbb{R}^\infty$ are polyhedra fibered over $|B|$ and we are given any concordance $Z \to |B \times \Delta^1|$ from X to Y, then we can choose a PL embedding of Z into $|B \times \Delta^1| \times \mathbb{R}^\infty$ which is compatible with the given embeddings on X and Y.

References