The Setup (Lecture 35)

February 6, 2015

Let us begin by recalling some of our main characters.

Notation 1. We let M denote the “classifying space” for simple homotopy types: that is, the Kan complex whose k-simplices are finite polyhedra $E \subseteq \Delta^k \times \mathbb{R}^\infty$ for which the projection map $E \to \Delta^k$ is a fibration.

For each integer $d \geq 0$, we let Man^d denote the Kan complex whose k-simplices are pairs (E, ρ), where $E \subseteq \Delta^k \times \mathbb{R}^\infty$ is a finite polyhedron, the projection $E \to \Delta^k$ is a PL fiber bundle whose fibers are PL manifolds of dimension d (possibly with boundary), and ρ is a trivialization of the (relative) tangent microbundle T_{E/Δ^k}.

Note that the construction $(E, \rho) \mapsto E$ determines a map of simplicial sets $\theta_d : \text{Man}^d \to M$.

Forming the product with $[0, 1]$ (and composing with an embedding $\mathbb{R}^\infty \times [0, 1] \hookrightarrow \mathbb{R}^\infty$) we obtain stabilization maps

$$M \to M \to M \to \ldots$$

$$\text{Man}^0 \to \text{Man}^1 \to \text{Man}^2 \to \ldots$$

which are compatible with the forgetful maps θ_d. We therefore obtain a map of simplicial sets

$$\theta_\infty : \text{Man}^\infty = \lim_{\to \delta} \text{Man}^d \to \lim_{\to \delta} M \cong M.$$

Variant 2. For each integer $d \geq 0$, we define simplicial sets $A^d, B^d, C^d,$ and D^d as follows:

(a) A k-simplex of A^d is a k-simplex (E, ρ) of Man^d having the property that each component of each fiber of E has nonempty boundary.

(b) A k-simplex of A^d is a pair (E, ρ) where $E \subseteq \Delta^k \times \mathbb{R}^\infty$ is a finite polyhedron, the projection $E \to \Delta^k$ is a fiber bundle whose fibers are PL manifolds of dimension d, each component of which has nonempty boundary, and ρ is a PL immersion from E to $\Delta^k \times \mathbb{R}^d$ which commutes with the projection to Δ^k.

(c) A k-simplex of C^d is a k-simplex (E, ρ) of B^d where the map ρ is an embedding.

(d) A k-simplex of D^d is a finite polyhedron $E \subseteq \Delta^k \times \mathbb{R}^d$ for which the projection $E \to \Delta^k$ is a fiber bundle whose fibers are PL manifolds of dimension d.

Note that every immersion of a PL d-manifold into \mathbb{R}^d determines a trivialization of its tangent microbundle.

We therefore have canonical maps of simplicial sets

$$D^d \leftarrow C^d \subseteq B^d \to A^d \subseteq \text{Man}^d.$$

Moreover, there are evident stabilization maps for each of these simplicial sets (which increase d by 1), given by forming the product with $[0, 1]$. We make the following observations:

- The map $\lim_{\to \delta} A^d \to \lim_{\to \delta} \text{Man}^d$ is an isomorphism of simplicial sets. This follows from the observation that each of the stabilization maps $\text{Man}^d \to \text{Man}^{d+1}$ factors through $A^{d+1} \subseteq \text{Man}^{d+1}$ (since a product $M \times [0, 1]$ always has nonempty boundary).
• Each of the maps $B^d \to A^d$ is a homotopy equivalence of Kan complexes. This follows from the work of Haefliger-Poenaru on piecewise linear immersion theory ([1]).

• Each of the maps $C^d \to D^d$ is a trivial Kan fibration (this is trivial: it essentially amounts to the observation that the space of embeddings from a PL manifold M into \mathbb{R}^∞ is contractible).

• The inclusion $\lim D^d \to \lim C^d$ is a homotopy equivalence. This follows from elementary general position arguments. For example, suppose that we wish to prove surjectivity on π_0. Unwinding the definitions, we wish to show that if M is a PL d-manifold equipped with an immersion $\rho : M \to \mathbb{R}^d$, then after replacing M by some product $M \times [0, 1]^k$ we can arrange that ρ is isotopic (through immersions) to an embedding. To prove this, we choose $k \gg 0$ and an embedding $e = (e_1, \ldots, e_k) : M \to [0, 1]^k$.

Using the fact that ρ is an immersion, we deduce that there exists $\epsilon > 0$ for which the map

$$M \times [0, 1]^k \to \mathbb{R}^{d+k}$$

$$(x, t_1, \ldots, t_k) \mapsto (\rho(x), e_1(x) + \epsilon t_1, \ldots, e_k(x) + \epsilon t_k)$$

is an embedding, and it is not difficult to check that this embedding is PL isotopic (through immersions) to the $\rho \times \text{id}$.

It follows that we obtain homotopy equivalences

$$\lim D^d \leftarrow \lim C^d \subseteq \lim B^d \to \lim A^d \subseteq \lim \text{Man}^d.$$

In other words, the direct limit $\text{Man}^\infty = \lim \text{Man}^d$ can be identified with a classifying space for embedded PL submanifolds $M \subseteq \mathbb{R}^d$ (stabilized by taking the dimension d to infinity).

Our goal over the next several lectures is to prove the following:

Theorem 3. The map θ_∞ is a homotopy equivalence of Kan complexes.

Let us begin by trying to analyze an individual map θ_d. By construction Man^d is a classifying space for compact framed PL manifolds of dimension d. Consequently, Man^d is homotopy equivalent to a disjoint union

$$\Pi_M \text{BAut}(M)$$

where the disjoint union is taken over all isomorphism classes of compact framed PL manifolds M of dimension d, and $\text{Aut}(M)$ denotes the (simplicial) group of framed PL homeomorphisms of M with itself. Let us make this identification more explicit. In what follows, we will use the term “simplicial category” to mean a simplicial object in the category of categories, and we will use the term “simplicially enriched category” to mean a category enriched over simplicial sets: that is, a simplicial category where the simplicial set of objects is constant.

Notation 4. Fix an integer $d \geq 0$. For each $k \geq 0$, we let \mathcal{E}_k denote the category whose objects are pairs (E, ρ), where $E \subseteq \Delta^k \times \mathbb{R}^\infty$ is a finite polyhedron, the projection $E \to \Delta^k$ is a PL fiber bundle whose fibers are PL manifolds of dimension d (possibly with boundary), and ρ is a trivialization of the (relative) tangent microbundle T_{E/Δ^k}. A morphism from (E, ρ) to (E', ρ') is a PL homeomorphism of E with E', compatible with the projection to Δ^k, which carries ρ to ρ'. We will regard \mathcal{E}_\bullet as a simplicial category. Let \mathcal{E}_0 denote the “underlying” simplicially enriched category, whose objects are the objects of the category \mathcal{E}_0 (which we can identify with framed PL d-manifolds, if we ignore the data of an embedding into \mathbb{R}^∞).

It is not difficult to see that the homotopy type of the disjoint union $\Pi_M \text{BAut}(M)$ is modeled by the bisimplicial set $N_{\bullet}(\mathcal{E}_\bullet)$. On the other hand, we have a canonical isomorphism of simplicial sets $\text{Man}^d \simeq N_0(\mathcal{E}_\bullet)$. The existence of a homotopy equivalence $\text{Man}^d \simeq \Pi_M \text{BAut}(M)$ is a consequence of the following:
Proposition 5. The canonical maps

\[N_\bullet (\mathcal{C}_\bullet ^o) \hookrightarrow N_\bullet (\mathcal{C}_\bullet) \leftarrow N_0(\mathcal{C}_\bullet) = \text{Man}^d \]

are weak homotopy equivalences (of bisimplicial sets).

Proof. The first map is a weak homotopy equivalence because for each integer \(k \), the inclusion \(\mathcal{C}_k ^o \hookrightarrow \mathcal{C}_k \) is an equivalence of categories (this follows from the observation that any PL fiber bundle \(E \to \Delta^k \) is trivial, because \(\Delta^k \) is contractible). To show that the second map is a weak homotopy equivalence, it will suffice to show that for each integer \(n \), the degeneracy map

\[N_0(\mathcal{C}_\bullet) \hookrightarrow N_n(\mathcal{C}_\bullet) \]

is a homotopy equivalence of Kan complexes. This map has a left inverse \(q \), given by evaluation at any choice of vertex in \(\Delta^n \). It now suffices to show that the map \(q : N_n(\mathcal{C}_\bullet) \to N_0(\mathcal{C}_\bullet) \) is a trivial Kan fibration. This follows from the contractibility of the space of embeddings of a PL manifold \(M \) into \(\mathbb{R}^\infty \); we leave the details to the reader.

We now consider a variant of Notation 4.

Notation 6. For each \(k \geq 0 \), we let \(\mathcal{D}_k \) denote the category whose objects are finite polyhedra \(E \subseteq \Delta^k \times \mathbb{R}^\infty \) for which the projection \(E \to \Delta^k \) is a fibration, and whose morphisms are cell-like maps \(E \to E' \) which commute with the projection to \(\Delta^k \). We will regard \(\mathcal{D}_\bullet \) as a simplicial category. Let \(\mathcal{D}_\bullet ^o \) denote the “underlying” simplicially enriched category. Ignoring the data of the PL embeddings, we can think of \(\mathcal{D}_\bullet ^o \) as the simplicially enriched category whose objects are finite polyhedra \(K \), where Map\(_{\mathcal{D}_\bullet ^o}(K,K') \) is the simplicial set parametrizing cell-like maps from \(K \) to \(K' \).

Note that we have a canonical isomorphism of simplicial sets \(M \simeq N_0(\mathcal{D}_\bullet) \). We have the following analogue of Proposition 5:

Proposition 7. The canonical maps

\[N_\bullet (\mathcal{D}_\bullet ^o) \alpha \hookrightarrow N_\bullet (\mathcal{D}_\bullet) \leftarrow N_0(\mathcal{D}_\bullet) = M \]

are weak homotopy equivalences (of bisimplicial sets).

Unlike Proposition 5, Proposition 7 is not a triviality. The first part of the proof breaks down because the inclusions \(\mathcal{D}_k ^o \hookrightarrow \mathcal{D} \) are not equivalences of categories (a PL fibration \(E \to \Delta^k \) need not be a fiber bundle), and the second part of the proof breaks down because cell-like maps need not be invertible. We will give the proof of Proposition 7 in the next lecture. For the moment, let us study its consequences.

For fixed \(d \geq 0 \), we have a commutative diagram (of bisimplicial sets)

\[
\begin{array}{ccc}
N_\bullet (\mathcal{C}_\bullet ^o) & \to & N_\bullet (\mathcal{C}_\bullet) \\
\downarrow & & \downarrow \theta_d \\
N_\bullet (\mathcal{D}_\bullet ^o) & \to & N_\bullet (\mathcal{D}_\bullet)
\end{array}
\]

Consequently, we can identify \(\theta_d \) with the map of bisimplicial sets \(N_\bullet (\mathcal{C}_\bullet ^o) \to N_\bullet (\mathcal{D}_\bullet ^o) \) induced by the forgetful functor \(\mathcal{C}_\bullet ^o \to \mathcal{D}_\bullet ^o \) (which associates to each framed PL manifold its underlying finite polyhedron).

It follows from general nonsense that the homotopy type of \(N_\bullet (\mathcal{C}_\bullet ^o) \) can be expressed as an iterated homotopy colimit

\[\text{hocolim}_{K \in \mathcal{D}_\bullet ^o}(\text{hocolim}_{M \in \mathcal{C}_\bullet ^o} \text{Map}_{\mathcal{D}_\bullet ^o}(M,K)). \]
Let us fix an object \(K \in \mathcal{D}_\bullet \) for the moment. It follows from Proposition 5 that we can identify the nerve \(N_\bullet (C_\bullet) \) with the classifying space \(\text{Man}^d \) for framed PL manifolds of dimension \(d \). The homotopy colimit \(\text{Man}_K^d = (\text{hocolim}_{M \in C_\bullet} \text{Map}_{\mathcal{D}^+}(M, K)) \) is equipped with a canonical map

\[
\text{Man}_K^d \to \text{hocolim}_{M \in C_\bullet} \ast \simeq \text{Man}^d,
\]

which is a fibration classified by the functor \(M \mapsto \text{Map}_\mathcal{D}^+(M, K) \). More explicitly, we can identify \(\text{Man}_K^d \) with the simplicial set whose \(k \)-simplices are triples \((E, \rho, q)\), where \((E, \rho)\) is a \(k \)-simplex of \(\text{Man}^d \) and \(q : E \to K \) is a PL map which is cell-like on each fiber of \(E \). The above analysis then gives

\[
\text{Man}_K^d \simeq \text{hocolim}_{\mathcal{D}_\bullet} \text{Man}_K^d.
\]

Note that for each \(d \geq 0 \), the construction \(M \mapsto M \times [0,1] \) determines a stabilization map \(\text{Man}_K^d \to \text{Man}_K^{d+1} \), depending functorially on \(K \). Set \(\text{Man}_K^\infty = \lim_{d \geq 0} \text{Man}_K^d \). It follows from the above analysis that the canonical map

\[
\text{hocolim}_{\mathcal{D}_\bullet} \text{Man}_K^\infty \to \text{Man}^\infty
\]

is a homotopy equivalence. Moreover, the composite map

\[
\text{hocolim}_{\mathcal{D}_\bullet} \text{Man}_K^\infty \to \text{Man}^\infty \xrightarrow{\theta} \lim_{d \geq 0} M
\]

is given by the composition

\[
\text{hocolim}_{\mathcal{D}_\bullet} \text{Man}_K^\infty \to \text{hocolim}_{\mathcal{D}_\bullet} \ast \simeq M \to \lim_{d \geq 0} M,
\]

where the last map is a homotopy equivalence (since the stabilization map \(M \times [0,1] \to M \) is a homotopy equivalence). Consequently, to prove Theorem 3, it will suffice to verify the following:

Proposition 8. For every finite polyhedron \(K \), the Kan complex \(\text{Man}_K^\infty \) is contractible.

Warning 9. It is natural to try to prove Proposition 8 by showing that the spaces \(\text{Man}_K^d \) become highly connected as \(d \) becomes large. However, this is not necessarily true. For example, take \(K \) to be a single point, so that \(\text{Man}_K^d \) is a classifying space for compact contractible framed PL manifolds. Note that any compact contractible PL \(d \)-manifold \(M \) admits a framing; if \(\text{Man}_K^K \) were connected, then \(M \) would need to be PL homeomorphic to a disk of dimension \(d \). However, this is not necessarily the case: if \(d \geq 6 \), then any closed PL manifold \(B \) with the homology of a \((d-1)\)-sphere bounds a contractible PL manifold \(M \) of dimension \(d \) ([2]). If \(B \) is not simply connected, then \(M \) cannot be homeomorphic to a disk.

Following [3], we introduce an auxiliary condition to rule out the behavior of Warning 9.

Definition 10. Let \(K \) be a finite polyhedron. A **d-manifold thickening of \(K \)** is a cell-like PL map \(\pi : M \to K \), where \(M \) is a framed PL manifold of dimension \(d \), having the additional property that for each point \(x \in K \), the intersection \(\partial M \cap \pi^{-1}\{x\} \) is simply connected. We let \(T^d(K) \) denote the simplicial subset of \(\text{Man}_K^d \) whose \(k \)-simplices are triples \((E, \rho, q)\) where \(q : E \to K \) is a \(d \)-manifold thickening of \(K \) on each fiber.

Note that if \(\pi : M \to K \) is any cell-like map and \(\pi' : M \times [0,1] \to K \) is the composition of \(\pi \) with the projection, then \(\partial(M \times [0,1]) \cap \pi'^{-1}\{x\} \) is homotopy equivalent to the suspension of \(\partial(M) \cap \pi^{-1}\{x\} \) for each \(x \in K \). It follows that the stabilization map \(\text{Man}_K^d \to \text{Man}_K^{d+1} \) carries \(T^d(K) \) into \(T^{d+1}(K) \), and that the three-fold iterate of the stabilization map carries all of \(\text{Man}_K^d \) into \(T^{d+3}(K) \). We may therefore identify \(\text{Man}_K^\infty \) with the direct limit \(\lim_{d \geq 0} T^d(K) \). The main step in the proof of Theorem 3 will be to verify the following:

Proposition 11. Let \(K \) be a finite polyhedron and let \(n \) be an integer. Then for every sufficiently large integer \(d \) (where the meaning of “sufficiently large” depends on \(K \) and \(n \)), the space of \(d \)-manifold thickenings \(T^d(K) \) is \(n \)-connected.
References

