Let X be a simplicial set. As before, we let \mathcal{C}_X denote the category whose objects are diagrams

$$
\begin{array}{ccc}
Y & \longrightarrow & X \\
\downarrow & & \downarrow \\
X & \longrightarrow & X
\end{array}
$$

where Y is obtained from X by adding finitely many simplices. Let s denote the collection of cell-like maps in \mathcal{C}_X, let h denote the collection of weak homotopy equivalences in \mathcal{C}_X, and let \mathcal{C}_X^h denote the full subcategory of \mathcal{C}_X spanned by those objects where the map $X \rightarrow Y$ is a weak homotopy equivalence. Our goal in this lecture (and the next) is to complete the second part of this course by establishing the following result:

Proposition 1. The diagram

$$
\begin{array}{ccc}
K(\mathcal{C}_X^h, s) & \longrightarrow & K(\mathcal{C}_X^h, h) \\
\downarrow & & \downarrow \\
K(\mathcal{C}_X, s) & \longrightarrow & K(\mathcal{C}_X, h)
\end{array}
$$

is a homotopy pullback square.

We will prove Proposition 1 by analyzing the K-theory space $K(\mathcal{C}_X, h)$ (which we know to be homotopy equivalent to $\Omega^\infty A^\text{free}(X)$) and eventually showing that it can be identified with the homotopy quotient of $K(\mathcal{C}_X, s)$ by the action of $K(\mathcal{C}_X^h, s)$.

As a first step, it will be convenient to replace \mathcal{C}_X by something slightly closer to \mathcal{C}_X^h.

Definition 2. For each integer n, let $\mathcal{C}_X^{(n)}$ denote the full subcategory of \mathcal{C}_X spanned by those objects for which the map $X \rightarrow Y$ is n-connected.

Lemma 3. For each integer n, the inclusion $\mathcal{C}_X^{(n)} \hookrightarrow \mathcal{C}_X$ induces homotopy equivalences

$$
K(\mathcal{C}_X^{(n)}, s) \rightarrow K(\mathcal{C}_X, s) \quad K(\mathcal{C}_X^{(n)}, h) \rightarrow K(\mathcal{C}_X, h).
$$

Proof. We will give the proof of the second assertion; the proof of the first is similar. When $n = -1$, there is nothing to prove. Proceeding by induction on n, we are reduced to proving that each of the inclusions $\mathcal{C}_X^{(n+1)} \hookrightarrow \mathcal{C}_X^{(n)}$ induce a homotopy equivalence $K(\mathcal{C}_X^{(n+1)}, h) \rightarrow K(\mathcal{C}_X^{(n)}, h)$. Let Y be an object of \mathcal{C}_X, given by a diagram

$$
\begin{array}{ccc}
Y & \longrightarrow & X \\
\downarrow^r & & \downarrow^\text{id} \\
X & \longrightarrow & X
\end{array}
$$
Let \(M(r) = (Y \times \Delta^1) \amalg_{\Gamma_X} X \) denote the mapping cylinder of \(r \) and let \(F(Y) = X \amalg_{\Gamma_Y} M(r) \) denote the two-sided mapping cylinder of \(r \). The construction \(Y \mapsto F(Y) \) induces a functor from \(\mathcal{C}_X \) to itself which carries \(\mathcal{C}_X^{(n)} \) into \(\mathcal{C}_X^{(n+1)} \); in particular, it carries both \(\mathcal{C}_X^{(n)} \) and \(\mathcal{C}_X^{(n+1)} \) to themselves. Note that \(F \) preserves cofibrations, pushouts, weak homotopy equivalences, and cell-like maps. It therefore induces maps on \(K \)-theory. Applying the two-out-of-six property to the diagram of spaces

\[
K(\mathcal{C}_X^{(n+1)}, h) \to K(\mathcal{C}_X^{(n)}, h) \xrightarrow{F} K(\mathcal{C}_X^{(n+1)}, h) \to K(\mathcal{C}_X^{(n)}, h),
\]

we are reduced to showing that \(F \) induces homotopy equivalences from \(K(\mathcal{C}_X^{(n)}, h) \) and \(K(\mathcal{C}_X^{(n+1)}, h) \) to themselves. In fact, we claim that on both \(K \)-theory spaces \(F \) acts by \((-1)\): this follows by applying the additivity theorem to the natural cofiber sequence

\[
Y \to M(r) \to F(Y),
\]

since the functor \(Y \mapsto M(r) \) is related by a cell-like natural transformation to the constant functor \(Y \mapsto X \).

By virtue of Lemma 3, it will suffice to show that the diagram

\[
\begin{array}{ccc}
K(\mathcal{C}_X^{(n)}, h) & \xrightarrow{F} & K(\mathcal{C}_X^{(n)}, h) \\
\downarrow & & \downarrow \\
K(\mathcal{C}_X^{(1)}, h) & \xrightarrow{F} & K(\mathcal{C}_X^{(1)}, h)
\end{array}
\]

is a homotopy pullback square.

Note that \(K(\mathcal{C}_X^{(1)}, h) \) can be obtained as the geometric realization of the simplicial object of \(\text{Set}_{\Delta} \) given by

\[
[n] \mapsto N(hS_n \mathcal{C}_X^{(1)}).
\]

Let us fix \(n \) for the moment, and consider the category \(hS_n \mathcal{C}_X^{(1)} \): the objects of this category can be identified with diagrams

\[
X \leftrightarrow Y_1 \leftrightarrow Y_2 \leftrightarrow \cdots \leftrightarrow Y_n \to X
\]

where all but the last map are 1-connected cofibrations (each adding finitely many simplices) and the composition is the identity, and the morphisms are levelwise weak homotopy equivalences. Let us denote such an object simply by \(\vec{Y} \). We would like to analyze \(hS_n \mathcal{C}_X^{(1)} \) in terms of the subcategory where the morphisms are levelwise cell-like maps. To this end, let us consider a bisimplicial set \(N'(hS_n \mathcal{C}_X^{(1)})_\bullet \bullet \) whose \((p, q)\)-simplices are diagrams

\[
\begin{array}{ccc}
\vec{Y}_{0,0} & \to & \cdots & \to & \vec{Y}_{0,q} \\
\downarrow & & \downarrow & & \downarrow \\
\cdots & \to & \cdots & \to & \cdots \\
\downarrow & & \downarrow & & \downarrow \\
\vec{Y}_{p,0} & \to & \cdots & \to & \vec{Y}_{p,q}
\end{array}
\]

where the horizontal maps are levelwise weak homotopy equivalences and the vertical maps are levelwise cell-like.

Lemma 4 (Swallowing Lemma). In the situation above, the canonical map

\[
N(hS_n \mathcal{C}_X^{(1)})_\bullet \to N'(hS_n \mathcal{C}_X^{(1)})_0 \bullet \to N'(hS_n \mathcal{C}_X^{(1)})_\bullet \bullet
\]

is a homotopy equivalence (after geometric realization).
Proof. It will suffice to show that for each \(p \geq 0 \), the natural map \(N'(hS_n C_\mathcal{X})_{p,*} \to N'(hS_n C_\mathcal{X})_{p,*} \) is a weak homotopy equivalence of simplicial sets. Note that the target can be identified with the nerve of the category \(\mathcal{E} \) whose objects are diagrams

\[
\tilde{Y}_0 \to \tilde{Y}_1 \to \cdots \to \tilde{Y}_p
\]

of (levelwise) cell-like maps in \(hS_n C_\mathcal{X}^{(1)} \). The diagonal map \(hS_n C_\mathcal{X}^{(1)} \to \mathcal{E} \) admits a left inverse, given by the construction

\[
\tilde{Y}_0 \to \tilde{Y}_1 \to \cdots \to \tilde{Y}_p \to \tilde{Y}_0.
\]

This left inverse is also a right homotopy inverse by means of the evident natural map

\[
\begin{array}{ccc}
\tilde{Y}_0^2 & \overset{id}{\longrightarrow} & \tilde{Y}_0^2 \\
\downarrow & & \downarrow \\
\tilde{Y}_0 & \longrightarrow & \tilde{Y}_0 \\
\end{array}
\begin{array}{ccc}
\tilde{Y}_0^2 & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\tilde{Y}_0 & \longrightarrow & \tilde{Y}_p \\
\end{array}
\begin{array}{ccc}
\tilde{Y}_0^2 & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\tilde{Y}_p & \longrightarrow & \tilde{Y}_p \\
\end{array}
\]

It will be convenient to consider a slightly smaller bisimplicial set. We say that a morphism \(\tilde{Y} \to \tilde{Y}' \) in \(hS_n C_\mathcal{X}^{(1)} \) is a cofibration if the induced map \(Y_i' \sqcup_{Y_i} Y_{i+1} \to Y_{i+1}' \) is a monomorphism of simplicial sets for each \(i \). Let \(N''(h C_\mathcal{X})_{*,*} \) denote the bisimplicial set whose objects are diagrams

\[
\begin{array}{ccc}
\tilde{Y}_{0,0} & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\cdots & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\tilde{Y}_{p,0} & \longrightarrow & \cdots \\
\end{array}
\begin{array}{ccc}
\tilde{Y}_{0,q} & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\cdots & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\tilde{Y}_{p,q} & \longrightarrow & \cdots \\
\end{array}
\]

where the horizontal maps are cofibrations and levelwise weak homotopy equivalences and the vertical maps are cell-like.

Lemma 5. The inclusion of bisimplicial sets

\[
N''(hS_n C_\mathcal{X})_{*,*} \hookrightarrow N'(hS_n C_\mathcal{X})_{*,*}
\]

is a weak homotopy equivalence (after geometric realization).

Proof. It will suffice to show that for each integer \(p \geq 0 \), the inclusion

\[
N''(hS_n C_\mathcal{X})_{p,*} \hookrightarrow N'(hS_n C_\mathcal{X})_{p,*}
\]

is a weak homotopy equivalence. In other words, if we let \(\mathcal{E}_0 \subseteq \mathcal{E} \) be the subcategory of \(\mathcal{E} \) whose morphisms are given by diagrams

\[
\begin{array}{ccc}
\tilde{Y}_0^2 & \overset{id}{\longrightarrow} & \tilde{Y}_1^2 \\
\downarrow & & \downarrow \\
\tilde{Y}_0 & \longrightarrow & \tilde{Y}_1 \\
\end{array}
\begin{array}{ccc}
\tilde{Y}_0^2 & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\tilde{Y}_0 & \longrightarrow & \tilde{Y}_p \\
\end{array}
\begin{array}{ccc}
\tilde{Y}_0 & \longrightarrow & \cdots \\
\downarrow & & \downarrow \\
\tilde{Y}_0 & \longrightarrow & \tilde{Y}_p \\
\end{array}
\]

is a weak homotopy equivalence.
where the vertical maps are cofibrations (as well as being weak homotopy equivalences), then we wish to show that the inclusion $\mathcal{E}_0 \hookrightarrow \mathcal{E}$ is a weak homotopy equivalence. Let us assume for simplicity that $p = n = 0$ (the proof in the general case is differs only by notation): then \mathcal{E} is the subcategory of $\mathcal{C}^{(1)}_{X}$ whose morphisms are weak homotopy equivalences, and \mathcal{E}_0 is the subcategory of $\mathcal{C}^{(1)}_{X}$ whose morphisms are trivial cofibrations. We will prove that the inclusion $\mathcal{E}_0 \hookrightarrow \mathcal{E}$ is a weak homotopy equivalence by showing that it is right cofinal. To this end, fix an object $Y \in \mathcal{E}$; we wish to show that the category $\mathcal{D} = \mathcal{E}_0 \times \mathcal{E}/Y$ is weakly contractible. Unwinding the definitions, we can identify the objects of \mathcal{D} are weak homotopy equivalences, and where the vertical maps are cofibrations (as well as being weak homotopy equivalences), then we wish to of trivial cofibrations

$$Y' \hookrightarrow (M(f) \amalg_\Delta^1 X) \hookrightarrow Y$$

where $M(f) = (Y' \times \Delta^1) \amalg_{Y' \times \{1\}} Y$ is the mapping cylinder of f.

Let us now reorganize a bit. For each $q \geq 0$, let $F_q(\mathcal{C}^{(1)}_{X})$ denote the category whose objects are sequences of trivial cofibrations

$$Y_0 \hookrightarrow Y_1 \hookrightarrow Y_2 \hookrightarrow \cdots \hookrightarrow Y_q$$

in $\mathcal{C}^{(1)}_{X}$. Then we can regard $F_q(\mathcal{C}^{(1)}_{X})$ as a category with cofibrations (defined as above, with the roles of n and q switched) and weak equivalences (given by the collection s of levelwise cell-like maps). This category with cofibrations and weak equivalences depends functorially on $[q]$, so we can regard $\mathcal{F}_q \mathcal{C}^{(1)}_{X}$ as a simplicial category with cofibrations and weak equivalences. Unwinding the definitions, we have

$$K(F_q(\mathcal{C}^{(1)}_{X})) \simeq |N(hS\mathcal{F}_q(\mathcal{C}^{(1)}_{X}))|.$$

Passing to the geometric realization as $[q]$ varies and invoking Lemmas 4 and 5, we obtain a homotopy equivalence

$$K(\mathcal{C}^{(1)}_{X}, h) \simeq |K(\mathcal{F}_q \mathcal{C}^{(1)}_{X}, s)|.$$

Given a cofibration $Y \hookrightarrow Y'$ in $\mathcal{C}^{(1)}_{X}$, let Y'/Y denote the pushout $Y' \amalg_{Y} X$. It is clear that if $Y \hookrightarrow Y'$ is a weak homotopy equivalence, then the quotient Y'/Y is weakly homotopy equivalent to X. If Y' and Y both belong to $\mathcal{C}^{(1)}_{X}$, then the converse holds: this follows from the observation that for any local system of abelian groups A on X, we have an isomorphism

$$H_*(Y', Y; A|_{Y'}) \simeq H_*(Y'/Y, X; A|_{Y'/Y}).$$

It follows that $F_q(\mathcal{C}^{(1)}_{X})$ admits an alternative description: it can be identified with the category whose objects are sequences of cofibrations

$$Y_0 \hookrightarrow Y_1 \hookrightarrow Y_2 \hookrightarrow \cdots \hookrightarrow Y_q$$

in $\mathcal{C}^{(1)}_{X}$ where each quotient Y_i/Y_{i-1} belongs to \mathcal{C}^h_{X}.

There is a natural map

$$\theta_q : (\mathcal{C}^{(1)}_{X} \times (\mathcal{C}^{h}_{X})^q) \to \mathcal{F}_q(\mathcal{C}^{(1)}_{X}),$$

given on objects by

$$(Y; Z_1, \ldots, Z_q) \mapsto (Y \hookrightarrow Y \amalg_{Y} Z_1 \hookrightarrow \cdots \hookrightarrow Y \amalg_{Y} Z_1 \amalg_{Y} Z_1 \cdots \amalg_{Y} Z_q)$$

This induces a map on K-theory spaces

$$K(\mathcal{C}^{(1)}_{X}, s) \times K(\mathcal{C}^{h}_{X}, s)^q \to K(F_q(\mathcal{C}^{(1)}_{X}), s).$$

Passing to the geometric realization as q varies, we obtain a map

$$K(\mathcal{C}^{(1)}_{X}, s)/K(\mathcal{C}^{h}_{X}, s)^q \to |K(\mathcal{F}_q \mathcal{C}^{(1)}_{X}, s)| \simeq K(\mathcal{C}^{(1)}_{X}, h).$$
To prove Proposition 1, it will suffice to show that this map is a homotopy equivalence. In fact, we will prove something stronger: each of the maps θ_q induces a homotopy equivalence at the level of K-theory. Note that θ_q has a left homotopy inverse ρ, given by the construction

$$(Y_0 \hookrightarrow \cdots \hookrightarrow Y_q) \mapsto (Y_0, (Y_1/Y_0, \cdots, Y_q/Y_{q-1})).$$

The composition $\theta_q \circ \rho$ is not homotopic to the identity at the level of categories, but induces the identity map on K-theory spaces (up to homotopy) by virtue of the additivity theorem.

References