Higher Torsion (Lecture 27)

November 5, 2014

Let Poly denote the ordinary category of finite polyhedra, and let S denote the ∞-category of spaces. Over the last few lectures, we have studied the functor $K : \text{Poly} \to S$ given by

$$K(\Delta^n) = |K(\text{Shv}_{PL}^*(X \times \Delta^n))|.$$

Since every finite polyhedron has an underlying topological space, there is a forgetful functor $\iota : \text{Poly} \to S$. Let us (temporarily) use the notation $\iota_! K_\Delta$ to denote the left Kan extension of K_Δ along ι. This left Kan extension can be computed in two steps:

- First, we can form the left Kan extension of ι along the forgetful functor $\text{Poly} \to \text{S}_{\text{fin}}$, where S_{fin} is the ∞-category of finite spaces. Since K_Δ is homotopy invariant, this is equivalent to lifting K_Δ along the fully faithful embedding $\text{Fun}(\text{S}_{\text{fin}}) \to \text{Fun}(\text{Poly}, S)$.
- We then form the left Kan extension along the fully faithful embedding $\text{S}_{\text{fin}} \to S$. This is the process of formally extending a functor $\text{S}_{\text{fin}} \to S$ to a functor $S \to S$ so that it commutes with filtered colimits.

It follows from this analysis that the restriction of $\iota_! K_\Delta$ to Poly agrees with the original functor K_Δ. We will henceforth abuse notation by denoting the functor $\iota_! K_\Delta$ also by K_Δ, so that we view K_Δ as a functor from spaces to spaces. The main theorem of the previous lectures gives us an explicit description of this functor: it is the domain of the assembly map in Waldhausen A-theory. That is, we have

$$K_\Delta(X) \simeq \Omega^\infty(X_+ \wedge A(\ast)).$$

We can use this identification to produce some $A(\ast)$-homology classes. Let X be a space, and suppose we are given a finite polyhedron Y, a map $f : Y \to X$, and a constructible sheaf \mathcal{F} on Y (with values in the ∞-category of finite spectra). Then \mathcal{F} is an object of $\text{Shv}_{PL}(Y)$ and therefore determines a point of $K(\text{Shv}_{PL}(Y))$, and therefore also of $K_\Delta(Y)$. Using the map f, we obtain a point of $K_\Delta(X)$ which we will denote by $\langle Y, \mathcal{F} \rangle$. In the special case where \mathcal{F} is the constant sheaf on Y (with value the sphere spectrum), we will denote this point simply by $\langle Y \rangle$.

We have an assembly map $K_\Delta(X) \to \Omega^\infty A(X)$. Unwinding the definitions, we see that this assembly map carries $\langle Y, \mathcal{F} \rangle$ to $[\mathcal{F}]$, where \mathcal{F}' is the local system of spectra on X which corepresents the functor

$$\text{Sp}^X \to \text{Sp}$$

$$\mathcal{G} \mapsto \Gamma(Y, \mathcal{F} \wedge f^* \mathcal{G})$$

(here Γ denotes the global sections functor). In the special case where \mathcal{F} is the constant sheaf, this functor is given by

$$\Gamma(Y, f^* \mathcal{G}) = \text{Map}_{\text{Sp}^X}(\Sigma Y, f^* \mathcal{G}) = \text{Map}_{\text{Sp}^X}(f_! \Sigma Y, f^* \mathcal{G}).$$

It follows that $\mathcal{F}' \simeq f_! \Sigma Y$ (where $f_!$ denotes the left adjoint to pullback on local systems), so that $[\mathcal{F}']$ can be identified with the point $[Y] \in \Omega^\infty A(X)$ studied in Lecture 21. This analysis proves the following:
Proposition 1. Let \(X \) be any space. For any finite polyhedron \(Y \) and any map \(f : Y \to X \), the assembly map \(K_{\Delta}(X) \to \Omega^\infty A(X) \) carries \(\langle Y \rangle \in K_{\Delta}(X) \) to \([Y] \in \Omega^\infty A(X) \).

All of the preceding considerations can be generalized to “allow parameters”. Let us be more precise. Fix a topological space \(X \). We define Kan complexes \(M_X \) and \(M^h_X \) as follows:

- The \(n \)-simplices of \(M_X \) are finite polyhedra \(Y \subseteq \Delta^n \times \mathbb{R}^\infty \) equipped with a map \(f : Y \to X \), for which the projection \(Y \to \Delta^n \) is a PL fibration.

- The \(n \)-simplices of \(M^h_X \) are subspaces \(Y \subseteq \Delta^n \times \mathbb{R}^\infty \) equipped with a map \(f : Y \to X \) for which the projection \(Y \to \Delta^n \) is a fibration with finitely dominated fibers.

The construction \((Y \to X) \mapsto [Y]\) can be naturally refined to a map of Kan complexes \(M^h_X \to \Omega^\infty A(X) \), and the construction \((Y \to X) \mapsto \langle Y \rangle\) can be naturally refined to a map of Kan complexes \(M_X \to K_{\Delta}(X) \).

Repeating the analysis that preceded Proposition 1, we obtain the following refinement:

Proposition 2. Let \(X \) be any space. Then the diagram

\[
\begin{array}{ccc}
M_X & \longrightarrow & K_{\Delta}(X) \\
\downarrow & & \downarrow \\
M^h_X & \longrightarrow & \Omega^\infty A(X)
\end{array}
\]

commutes (up to canonical homotopy).

Let us now suppose that the space \(X \) itself is finitely dominated. In this case, the Kan complex \(M^h_X \) contains a contractible path component whose vertices are homotopy equivalences \(Y \to X \). Let us denote this path component by \(M^h_X \). We have a diagram of homotopy pullback squares

\[
\begin{array}{ccc}
M_X \times_{M^h_X} M^h_X & \longrightarrow & M_X \\
\downarrow & & \downarrow \\
M^h_X & \longrightarrow & M^h
\end{array}
\]

In other words, the homotopy fiber of the map \(M \to M^h \) over \(X \) can be identified with \(M_X \times M^h_X \). Applying Proposition 2, we obtain a map

\[
M \times M^h \{X\} \simeq M_X \times M^h_X \quad \cong \quad K_{\Delta}(X) \times_{\Omega A(X)} M^h_X \\
\longrightarrow \quad K_{\Delta}(X) \times_{\Omega A(X)} \{[X]\}.
\]

We can now give a more precise formulation of the main result of the second part of this course:

Theorem 3. Let \(X \) be a finitely dominated space. Then the map

\[
M \times M^h \{X\} \to K_{\Delta}(X) \times_{\Omega A(X)} \{[X]\}
\]

is a homotopy equivalence.

Example 4. Theorem 3 implies that the homotopy fiber \(M \times M^h \{X\} \) is either empty (in case \(X \) has non-vanishing Wall obstruction) or a torsor for the infinite loop space

\[
\text{fib}(K_{\Delta}(X) \to \Omega^\infty A(X)) \simeq \Omega^\infty A(X).
\]
where Wh(X) denotes the (piecewise-linear) Whitehead spectrum of X.

If X itself is given as a finite polyhedron, then the space $M \times M^b \{ X \}$ has a canonical base point. In this case, we obtain a canonical homotopy equivalence

$$\tau : M \times M^b \{ X \} \simeq \Omega^{\infty+1} \text{Wh}(X).$$

Note that the points of $M \times M^b \{ X \}$ can be identified with pairs (Y, f), where Y is a finite polyhedron and $f : Y \to X$ is a homotopy equivalence. If X itself is a finite polyhedron, then the “identity component” of $M \times M^b \{ X \}$ consists of those pairs (Y, f) where f is a simple homotopy equivalence. It follows from Theorem 3 that f is a simple homotopy equivalence if and only if a certain element $\tau(Y, f) \in \pi_1 \text{Wh}(X)$ vanishes. If X is connected with fundamental group G, we have seen that there is a canonical isomorphism of $\pi_1 \text{Wh}(X)$ with the Whitehead group $\text{Wh}(G)$ of G, so we can identify $\tau(Y, f)$ with an element of $\text{Wh}(G)$.

Proposition 5. In the situation above, the element $\tau(Y, f) \in \text{Wh}(G)$ coincides with the Whitehead torsion of the homotopy equivalence f (as defined in Lectures 3 and 4).

Combining Proposition 5 with Theorem 3, we obtain another proof of the main result from Lecture 4: the homotopy equivalence $f : Y \to X$ is simple if and only if its Whitehead torsion vanishes. In other words, Proposition 5 allows us to regard Theorem 3 as a generalization of the main result of Lecture 4 (and, as we have already noted, Theorem 3 also generalizes the theory of the Wall obstruction).

Let us informally sketch a proof of Proposition 5. Without loss of generality, we may assume that Y and X have been equipped with triangulations that are compatible with the map f. Assume that X is connected with fundamental group G. We have a pair of points

$$\langle X \rangle, \langle Y \rangle \in K_\Delta(X),$$

having images $[X], [Y] \in \Omega^\infty A(X)$. Our assumption that f is a homotopy equivalence supplies an equivalence of local systems $f_*S_X \simeq S_Y$, which gives a path p joining $[X]$ and $[Y]$ in $\Omega^\infty A(X)$. This path gives a lift of $\langle X \rangle - \langle Y \rangle$ to the homotopy fiber

$$\Omega^{\infty+1} \text{Wh}(X) \simeq \text{fib}(K_\Delta(A) \to \Omega^\infty A(X),$$

and $\tau(Y, f)$ is the path component of this lift. Note that the map $\pi_0 K_\Delta(X) \to \pi_0 A(X)$ is injective, so that $\langle X \rangle$ and $\langle Y \rangle$ belong to the same path component of $\Omega^\infty A(X)$. If we choose a path q from $\langle X \rangle$ to $\langle Y \rangle$, then we can combine p with the image of q to form a closed loop in the space $\Omega^\infty A(X)$. This loop determines an element $\eta \in \pi_1 A(X) \simeq K_1(\mathbb{Z}[G])$, which is preimage of $\tau(Y, f)$ under the connecting homomorphism

$$\pi_1 A(X) \to \pi_0 (\text{fib} K_\Delta(X) \to \Omega^\infty A(X)).$$

Note that the element η depends on the choice of path q.

Let $\Sigma(X)$ and $\Sigma(Y)$ denote the set of simplices of X and Y, respectively. Let S_X and S_Y denote the constant sheaves (with value the sphere spectrum) on X and Y, respectively. For each simplex σ of X (or Y), let S_{σ} denote the constructible sheaf on X (or Y) taking the value S on σ and 0 elsewhere (in other words, the sheaf which is “extended by zero” from the interior of σ) and let S_{σ}^n denote the nth suspension of S_{σ}. Note that

$$f_*S_{\sigma} \simeq S_{f(\sigma)}^{\dim f(\sigma) - \dim(\sigma)}.$$

For each $\sigma \in \Sigma(X) \cup \Sigma(Y)$, consider the point $e_\sigma \in K_\Delta(X)$ given by

$$e_\sigma = \begin{cases} [S_{\sigma}] & \text{if } \Sigma \in \Sigma(X) \\ -[S_{f(\sigma)}^{\dim f(\sigma) - \dim(\sigma)}] & \text{if } \Sigma \in \Sigma(Y) \end{cases}$$

Using the additivity theorem, we can choose a path from the difference $\langle X \rangle - \langle Y \rangle$ to the sum $\sum_{\sigma \in \Sigma(X) \cup \Sigma(Y)} e_\sigma$. Let E denote the union of the set of even-dimensional simplices of X and odd-dimensional simplices of Y.

3
and let \(E' \) denote the union of the set of odd-dimensional simplices of \(X \) and even-dimensional simplices of \(Y \). Note that \(\pi_0 K_\Delta(X) \cong \mathbb{Z} \), and \(e_\sigma \) belongs to the path component \(1 \) if \(\sigma \in E \) and the path component \(-1\) if \(\sigma \in E' \). Since \(f \) is a homotopy equivalence, \(X \) and \(Y \) have the same Euler characteristic and therefore \(E \) and \(E' \) have the same size. We may therefore choose a bijection \(\beta : E \cong E' \). For each \(\sigma \in E \), we can choose a path \(q_\sigma \) in \(K_\Delta(X) \) from \(e_\sigma + e_\beta(\sigma) \) to the base point; note that these paths are ambiguous up to an element of \(\pi_1 K_\Delta(X) \cong \mathbb{G} \oplus \mathbb{Z}/2\mathbb{Z} \). The sum of these paths determines a path \(q \) from \(\langle X \rangle - \langle Y \rangle \) to the base point.

Unwinding the definitions, we see that the image of \([X] - [Y] \) in \(K(\mathbb{Z}[G]) \) can be represented by the relative cellular chain complex \(C_*(X,Y;\mathbb{Z}[G]) \). The given triangulations of \(X \) and \(Y \) determine a basis for \(C_*(X,Y;\mathbb{Z}[G]) \) as a \(\mathbb{Z}[G] \)-module, where the basis elements are ambiguous up to \(\pm \mathbb{G} \). We have two paths from \([C_*(X,Y;\mathbb{Z}[G])]\) to the base point of \(K(\mathbb{Z}[G]) \), given as follows:

(a) The image of \(p \) determines a path from \([C_*(X,Y;\mathbb{Z}[G])]\) to the base point of \(K(\mathbb{Z}[G]) \) which arises from the observation that \(C_*(X,Y;\mathbb{Z}[G]) \) is an acyclic complex (because \(f \) is a homotopy equivalence), and therefore represents a zero object of the \(\infty \)-category \(\text{Rep}_{\mathbb{Z}[G]} \).

(b) The image of the path \(q \) determines a path from \([C_*(X,Y;\mathbb{Z}[G])]\) to the base point of \(K(\mathbb{Z}[G]) \). After possibly modifying our choice of basis, we can arrange that this path is obtained by first invoking the additivity theorem to construct a path from \([C_*(X,Y;\mathbb{Z}[G])]\) to the point represented by the sum

\[
\bigoplus_{\sigma \in \Sigma(X)} [\Sigma^{\dim(\sigma)} \mathbb{Z}[G]] + \bigoplus_{\sigma \in \Sigma(Y)} [\Sigma^{\dim(\sigma)+1} \mathbb{Z}[G]],
\]

and then connecting this latter sum to the base point by matching factors using the bijection \(\beta \).

We are therefore reduced to the following statement, which we leave as a (tedious) exercise:

Exercise 6. Let \(R \) be a ring and let \(F_* \) be a bounded acyclic chain complex of free \(R \)-modules, where \(\chi(F_*) = 0 \) (the latter condition is automatic if \(R \) has the form \(\mathbb{Z}[G] \)). Suppose we have chosen a basis \(\{e_i, e'_i\} \) for \(F_* \), where each \(e_i \) is homogeneous of even degree \(d_i \), and each \(e'_i \) is homogeneous of odd degree \(d'_i \). Then the torsion \(\tau(F_*) \in K_1(R) \cong \pi_1 K(R) \) (as defined in Lecture 3) can be represented as the “difference” between two paths from \([F_*]\) to the base point of the space \(K(R) \):

(a) The path obtained from the observation that the chain complex \(F_* \) represents the zero object of \(\text{Mod}_R \) (since \(F_* \) is acyclic).

(b) The path obtained by first using the additivity theorem to construct a path from \([F_*]\) to the sum \(\sum d_i [\Sigma^d_i R] \oplus [\Sigma^{d'_i} R] \), then connecting each \([\Sigma^d_i R] + [\Sigma^{d'_i} R] \) to the base point using the fact that \(d_i \) and \(d'_i \) have different parities.

References
