Additive K-Theory (Lecture 18)

October 15, 2014

Let \(\mathcal{C} \) be a pointed \(\infty \)-category which admits finite colimits, let \(\mathcal{C}_0 \subseteq \mathcal{C} \) be a full subcategory which is closed under finite colimits, and assume that every object of \(\mathcal{C} \) can be obtained as a retract of an object of \(\mathcal{C}_0 \). In Lectures 14 and 15, we saw that there can be a big difference between \(K_0(\mathcal{C}) \) and \(K_0(\mathcal{C}_0) \): in the stable case, an object \(C \in \mathcal{C} \) belongs to (the essential image of) \(\mathcal{C}_0 \) if and only if the class \([C] \in K_0(\mathcal{C}) \) belongs to the image of the map \(K_0(\mathcal{C}_0) \hookrightarrow K_0(\mathcal{C}) \). Our first goal in this lecture is to show that the difference between \(\mathcal{C} \) and \(\mathcal{C}_0 \) disappears when we look at higher \(K \)-groups. More precisely, we have the following result:

Proposition 1. Let \(\mathcal{C} \) and \(\mathcal{C}_0 \) be as above. Then the canonical map \(K_0(\mathcal{C}_0) \rightarrow K_0(\mathcal{C}) \) is an isomorphism for \(n > 0 \). In other words, the diagram of spaces

\[
\begin{array}{ccc}
K(\mathcal{C}_0) & \rightarrow & K(\mathcal{C}) \\
\downarrow & & \downarrow \\
K_0(\mathcal{C}_0) & \rightarrow & K_0(\mathcal{C})
\end{array}
\]

is a homotopy pullback square.

To prove Proposition 1, we may assume without loss of generality that \(\mathcal{C} \) and \(\mathcal{C}_0 \) are stable (since the construction \(\mathcal{C} \mapsto \text{SW}(\mathcal{C}) \) has no effect on \(K \)-theory). For every group \(G \), let \(B\bullet(G) \) denote the simplicial set which models the classifying space of \(G \), so that the set \(B^n(G) \) of \(n \)-simplices of \(B\bullet(G) \) can be identified with \(G^n \). Let us describe this in a way that makes the simplicial structure of \(B\bullet(G) \) more apparent. Using additive notation for the group structure on \(G \)(we will ultimately be interested in the case where \(G \) is abelian), we can identify \(B^n(\mathcal{C}) \) with the set of maps \(f : [n]^{(2)} = \{(i,j) \in [n] \times [n] : i \leq j \} \rightarrow G \) which have the property that \(f(i,i) = 0 \) and \(f(i,j) + f(j,k) = f(i,k) \) for \(i \leq j \leq k \).

If \(\mathcal{C} \) is a pointed \(\infty \)-category which admits finite colimits, then every \([n] \)-gapped object \(X : [n]^{(2)} \rightarrow \mathcal{C} \) determines a map \(f : [n]^{(2)} \rightarrow K_0(\mathcal{C}) \), given by \(f(i,j) = [X(i,j)] \), and \(f \) will satisfy the condition above. This construction is functorial in \([n] \) and therefore gives rise to a map of simplicial spaces

\[
S\bullet(\mathcal{C}) \rightarrow B\bullet(K_0(\mathcal{C})).
\]

The natural map \(K(\mathcal{C}) \rightarrow K_0(\mathcal{C}) \) can then be obtained by passing to classifying spaces and then applying \(\Omega \). We may therefore rephrase Proposition 1 as follows:

Proposition 2. Let \(\mathcal{C} \) be a stable \(\infty \)-category and let \(\mathcal{C}_0 \) be a full stable subcategory such that every object of \(\mathcal{C} \) is a direct summand of an object of \(\mathcal{C}_0 \). Then the diagram

\[
\begin{array}{ccc}
|S\bullet(\mathcal{C}_0)| & \rightarrow & |S\bullet(\mathcal{C})| \\
\downarrow & & \downarrow \\
|B\bullet K_0(\mathcal{C}_0)| & \rightarrow & |B\bullet K_0(\mathcal{C})|
\end{array}
\]

is a homotopy pullback square.
Because the map $K_0(\mathcal{C}_0) \to K_0(\mathfrak{C})$ is injective and an object $C \in \mathfrak{C}$ belongs to \mathcal{C}_0 if and only if its K-theory class $[C]$ lifts to $K_0(\mathcal{C}_0)$, the diagram of simplicial spaces

$$
\begin{array}{ccc}
S_*\left(\mathcal{C}_0\right) & \longrightarrow & S_*\left(\mathfrak{C}\right) \\
\downarrow & & \downarrow \\
B_*K_0(\mathcal{C}_0) & \longrightarrow & B_*K_0(\mathfrak{C})
\end{array}
$$

is a homotopy pullback square. As in the previous lecture, we need to show that this remains true after geometric realization. Once again, this conclusion is not purely formal, because the spaces $B_*K_0(\mathfrak{C})$ are not connected (in fact, they are discrete). Our proof will proceed by taking advantage of some additional structure available in this situation: in this case, the coherently associative addition law on the spaces involved (given by the formation of coproducts in \mathfrak{C}).

Notation 3. Let \mathcal{S} denote the ∞-category of spaces and let \mathbf{Sp} denote the ∞-category of spectra. The formation of 0th spaces determines a functor $\Omega^0 : \mathbf{Sp} \to \mathcal{S}$. The ∞-category \mathbf{Sp} is stable, so that products and coproducts coincide. Consequently, every object $E \in \mathbf{Sp}$ can be regarded as a commutative monoid object of \mathbf{Sp} in an essentially unique way. It follows that Ω^∞ determines a map $\mathbf{Sp} \to \mathbf{CAlg}(\mathcal{S})$, where $\mathbf{CAlg}(\mathcal{S})$ denotes the ∞-category of commutative monoid objects of \mathcal{S}: that is, the ∞-category of E_∞-spaces.

It follows from abstract nonsense that the functor $\Omega^\infty : \mathbf{Sp} \to \mathbf{CAlg}(\mathcal{S})$ admits a left adjoint, which we will denote by $X \mapsto X^{gp}$. We will refer to X^{gp} as the *group completion* of X. Tautologically, any E_∞-space is equipped with an E_∞-map $X \to \Omega^\infty X^{gp}$. Nontautologically, one can show that this map is a homotopy equivalence if and only if X is grouplike: that is, π_0X is a group.

Let \mathfrak{C} be an ∞-category which admits finite coproducts. Then the formation of coproducts endows the underlying Kan complex \mathfrak{C}^Δ with the structure of an E_∞-space. We will refer to the group completion $(\mathfrak{C}^\Delta)^{gp}$ as the *additive K-theory spectrum* of \mathfrak{C} and denote it by $K_{\text{add}}(\mathfrak{C})$ (note that this conflicts with the notation of Lecture 14, where we used the same notation for the abelian group $\pi_0K_{\text{add}}(\mathfrak{C})$).

If \mathfrak{C} is a pointed ∞-category which admits finite colimits, then each $\text{Gap}_{[n]}(\mathfrak{C})$ has the same property. It follows that each $S_n(\mathfrak{C})$ is an E_∞-space which has a group completion $S_n(\mathfrak{C})^{gp}$. Since the geometric realization $|S_*\mathfrak{C}|$ is grouplike (it is connected, we have

$$
|S_*\mathfrak{C}| \simeq \Omega^\infty(|S_*\mathfrak{C}|^{gp})
$$

$$
\simeq \Omega^\infty(|S_*\mathfrak{C}|^{gp}).
$$

It follows that the diagram of Proposition 2 is obtained by applying Ω^∞ to a diagram of spectra

$$
\begin{array}{ccc}
|S_*\left(\mathcal{C}_0\right)^{gp}| & \longrightarrow & |S_*\left(\mathfrak{C}\right)^{gp}| \\
\downarrow & & \downarrow \\
|HB_*K_0(\mathcal{C}_0)| & \longrightarrow & |HB_*K_0(\mathfrak{C})|.
\end{array}
$$

The functor Ω^∞ preserves pullback squares, and the formation of geometric realizations of spectra commutes with pullbacks (since the ∞-category \mathbf{Sp} is stable). It will therefore suffice to show that each of the diagrams

$$
\begin{array}{ccc}
S_n(\mathcal{C}_0)^{gp} & \longrightarrow & S_n(\mathfrak{C})^{gp} \\
\downarrow & & \downarrow \\
HB_nK_0(\mathcal{C}_0) & \longrightarrow & HB_nK_0(\mathfrak{C})
\end{array}
$$

is a pullback square. Replacing \mathfrak{C} by $\text{Gap}_{[n]}(\mathfrak{C})$, we can reduce to the case $n = 1$. Proposition 2 is now reduced to the following “additive” version:
Proposition 4. Let \(\mathcal{C} \) be a stable \(\infty \)-category and let \(\mathcal{C}_0 \) be a full stable subcategory such that every object of \(\mathcal{C} \) is a direct summand of an object of \(\mathcal{C}_0 \). Then the diagram
\[
\begin{array}{ccc}
K_{\text{add}}(\mathcal{C}_0) & \longrightarrow & K_{\text{add}}(\mathcal{C}) \\
\downarrow & & \downarrow \\
HK_0(\mathcal{C}_0) & \longrightarrow & HK_0(\mathcal{C})
\end{array}
\]
is a homotopy pullback square.

Proof. This is a version of the group completion theorem. Let us indicate a proof. The spectra involved are connective, and the vertical maps are surjective on \(\pi_0 \). Consequently, it will suffice to show that the diagram of 0th spaces
\[
\begin{array}{ccc}
\Omega^\infty K_{\text{add}}(\mathcal{C}_0) & \longrightarrow & \Omega^\infty K_{\text{add}}(\mathcal{C}) \\
\downarrow & & \downarrow \\
K_0(\mathcal{C}_0) & \longrightarrow & K_0(\mathcal{C})
\end{array}
\]
is a pullback square. Let \(Z \) denote the inverse image of \(K_0(\mathcal{C}_0) \) in \(\Omega^\infty K_{\text{add}}(\mathcal{C}) \); we wish to show that the canonical map \(\theta : \Omega^\infty K_{\text{add}}(\mathcal{C}_0) \rightarrow Z \) is a homotopy equivalence. Since \(\Omega^\infty K_{\text{add}}(\mathcal{C}_0) \) and \(X \) are simple (they are infinite loop spaces), it will suffice to check that \(\theta \) induces an isomorphism in homology.

Consider the singular chain complexes
\[
A_0 = C_*(\Omega^\infty K_{\text{add}}(\mathcal{C}_0); \mathbb{Z}) \quad A = C_*(\Omega^\infty K_{\text{add}}(\mathcal{C}); \mathbb{Z}).
\]
Using the \(E_\infty \)-structures on the spaces involved, we can regard \(A_0 \) and \(A \) as \(E_\infty \)-algebras over \(\mathbb{Z} \). Similarly, we have \(E_\infty \)-algebras
\[
B_0 = C_*(\mathcal{C}_0^\Sigma; \mathbb{Z}) \quad B = C_*(\mathcal{C}^\Sigma; \mathbb{Z}).
\]
Note that \(B \) contains \(B_0 \) as a direct summand, and in fact we have a natural grading \(B = \bigoplus B_\alpha \) where \(\alpha \) ranges over the cosets of \(K_0(\mathcal{C}_0) \) in \(K_0(\mathcal{C}) \).

Using the universal property of the group completion, we see that \(A_0 \) can be obtained from \(B_0 \) by inverting all elements of the form \([X] \in \mathbb{Z}[K_0(\mathcal{C}_0)] \simeq H_0(A_0) \) for \(X \in \mathcal{C}_0 \), and that \(A \) can be obtained from \(B \) by inverting all elements \([X] \) for \(X \in \mathcal{C} \). However, since every object of \(\mathcal{C} \) is a direct summand of an object in \(\mathcal{C}_0 \), we only need to invert the classes \([X] \) for \(X \in \mathcal{C}_0 \). We therefore have a canonical equivalence \(A \simeq A_0 \otimes_{B_0} B \). This equivalence determines a direct sum decomposition
\[
A \simeq \bigoplus_\alpha A_0 \otimes_{B_\alpha} B_\alpha,
\]
where the chain complex \(C_*(X; \mathbb{Z}) \) can be identified with the summand corresponding to \(\alpha = 0 \). From this description, it is clear that \(A_0 \simeq C_*(X; \mathbb{Z}) \).

Sometimes there is not much difference between \(K \)-theory and additive \(K \)-theory. Roughly speaking, we would expect this behavior in a situation where every cofiber sequence
\[
X' \rightarrow X \rightarrow X''
\]
_splits. However, this hypothesis is unreasonably strong in the context we have been discussing so far: for a cofiber sequence
\[
X \rightarrow * \rightarrow \Sigma(X)
\]
to split, we must have \(X \simeq * \). It will therefore be useful to consider a slightly more general setup:
Definition 5. An \(\infty\)-category with cofibrations is a pointed \(\infty\)-category \(\mathcal{C}\) with a distinguished class of morphisms, which we will call cofibrations, which satisfy the following axioms:

- All equivalences are cofibrations and the collection of cofibrations is closed under composition.
- For every object \(X\) in \(\mathcal{C}\), the canonical map \(* \to X\) is a cofibration.
- For a cofibration \(f : X \to X'\) and an arbitrary map \(X \to Y\), there exists a pushout square

\[
\begin{array}{ccc}
X & \rightarrow & X' \\
\downarrow & & \downarrow \\
Y & \rightarrow & Y'
\end{array}
\]

and the map \(g\) is also a cofibration.

Warning 6. We are using the term “cofibration” in order to follow the language of Waldhausen’s paper, but the notion of cofibration considered above does not \textit{a priori} have any relationship to the notion of cofibration in the language of model categories.

Example 7. Let \(\mathcal{C}\) be a pointed \(\infty\)-category. One way to try to satisfy the axiomatics of Definition 5 is to have as many cofibrations as possible. We can make \(\mathcal{C}\) into an \(\infty\)-category with cofibrations where \textit{all} morphisms are cofibrations if and only if \(\mathcal{C}\) has finite colimits.

Example 8. Let \(\mathcal{C}\) be a pointed \(\infty\)-category. Another way to try to satisfy the axiomatics of Definition 5 is to have as few cofibrations as possible. Note that if for any pair of objects \(X\) and \(Y\), the natural map \(* \to X\) is a cofibration and therefore there exists a pushout square

\[
\begin{array}{ccc}
* & \rightarrow & X \\
\downarrow & & \downarrow \\
Y & \rightarrow & X \vee Y
\end{array}
\]

where the lower horizontal map is a cofibration. Consequently, if \(\mathcal{C}\) is an \(\infty\)-category with cofibrations, then \(\mathcal{C}\) must have coproducts and every map of the form \(Y \to X \vee Y\) must be a cofibration.

Conversely, suppose that \(\mathcal{C}\) is a pointed \(\infty\)-category which admits finite coproducts. Then \(\mathcal{C}\) can be made into an \(\infty\)-category with cofibrations by declaring that a morphism \(f\) is a cofibration if and only if it is equivalent to a morphism of the form \(Y \to X \vee Y\); we will refer to such a morphism as a \textit{split cofibration}.

Let \(\mathcal{C}\) be an \(\infty\)-category with cofibrations. For each integer \(n\), we let \(\text{Gap}_{[n]}(\mathcal{C})\) denote the full subcategory of \(\text{Fun}(\mathcal{N}\{(i, j) \in [n] \times [n] : i \leq j\}, \mathcal{C})\) spanned by those functors \(X\) satisfying the following three conditions:

- For each \(i \leq j \leq k\), the natural map \(X(i, j) \to X(i, k)\) is a cofibration.
- For each \(i\), the object \(X(i, i)\) is zero.
- For each \(i \leq j \leq k\), the diagram

\[
\begin{array}{ccc}
X(i, j) & \rightarrow & X(i, k) \\
\downarrow & & \downarrow \\
* & \rightarrow & X(j, k)
\end{array}
\]

is a pushout square.
Arguing as in Lecture 16, we see that an object X of $\text{Gap}_{[n]}(\mathcal{C})$ is determined by the diagram

$$X(0, 1) \to X(0, 2) \to \cdots \to X(0, n).$$

The only difference is that this time, we consider only those diagrams where each map is a cofibration.

Definition 9. Let \mathcal{C} be an ∞-category with cofibrations. We let $S_\bullet(\mathcal{C})$ denote the simplicial space given by the formula $S_n(\mathcal{C}) = \text{Gap}_{[n]}(\mathcal{C})^\times$, where $\text{Gap}_{[n]}(\mathcal{C})$ is defined as above. We let $K(\mathcal{C})$ denote the space given by $\Omega|S_\bullet(\mathcal{C})|$. The simplicial space $S_\bullet(\mathcal{C})$ and $K(\mathcal{C})$ depend not only on the ∞-category \mathcal{C}, but also on the class of cofibrations chosen. For example, if \mathcal{C} admits finite colimits and we declare that all morphisms are cofibrations (Example 7), then we recover the definitions of Lecture 16. If \mathcal{C} admits finite coproducts and we use only the split cofibrations (Example 8), then we often recover additive K-theory $K_{\text{add}}(\mathcal{C})$.

Theorem 10. Let \mathcal{C} be an ∞-category which admits finite products and finite coproducts, and assume that the homotopy category of \mathcal{C} is additive (so that finite products and finite coproducts in \mathcal{C} coincide). For example, we can take any stable ∞-category, or any subcategory of a stable ∞-category which is closed under direct sums. Regard \mathcal{C} as an ∞-category with cofibrations as in Example 8 (allowing only split cofibrations). Then there is a canonical homotopy equivalence $K_{\text{add}}(\mathcal{C}) \to K(\mathcal{C})$ (where we abuse notation by identifying $K_{\text{add}}(\mathcal{C})$ with its 0th space).

We can identify the 0th space of $K_{\text{add}}(\mathcal{C})$ with the $\Omega|Y_\bullet|$, where Y_\bullet is the simplicial space given by $Y_n = (\mathcal{C}^{\infty})^n$ (made into a simplicial space using the coproduct on \mathcal{C}^{∞}). The map $K_{\text{add}}(\mathcal{C}) \to K(\mathcal{C})$ is then obtained from a map of simplicial spaces

$$Y_\bullet \to S_\bullet(\mathcal{C});$$

in degree n this map is given by the construction

$$(C_1, \ldots, C_n) \mapsto (C_1 \to C_1 \oplus C_2 \to \cdots \to C_1 \oplus \cdots \oplus C_n).$$

We wish to show that the induced map of geometric realizations $|Y_\bullet| \to |S_\bullet(\mathcal{C})|$ is a homotopy equivalence. All of the spaces in sight admit E_∞-structures coming from the formation of coproducts in \mathcal{C}. Arguing as before, we obtain homotopy equivalences

$$|Y_\bullet| \simeq \Omega^\infty |Y_\bullet|^{\text{gp}}$$

$$\simeq \Omega^\infty |Y_\bullet|^{\text{gp}}.$$

$$|S_\bullet(\mathcal{C})| \simeq \Omega^\infty |S_\bullet(\mathcal{C})|^{\text{gp}}$$

$$\simeq \Omega^\infty |S_\bullet(\mathcal{C})|^{\text{gp}}.$$

It will therefore suffice to show that for each $n \geq 0$, the map $Y_n \to S_n(\mathcal{C})$ induces a homotopy equivalence of spectra $Y_n^{\text{gp}} \to S_n(\mathcal{C})^{\text{gp}}$.

For simplicity, let us consider the case $n = 2$ (the general case is only notationally more difficult). The space $S_2(\mathcal{C})$ classifies morphisms $f : X \to X'$ which are split cofibrations in \mathcal{C}. Let $e : S_2(\mathcal{C}) \to \mathcal{C}^{\infty}$ be the map given by $e(X \to X') = X$, let $\pi : \mathcal{C}^{\infty} \times \mathcal{C}^{\infty} \to \mathcal{C}^{\infty}$ be projection onto the first factor, and let $i : \mathcal{C}^{\infty} \to \mathcal{C}^{\infty} \times \mathcal{C}^{\infty}$ be given by $X \mapsto (**, X)$. We then have a commutative diagram of E_∞-spaces

$$\begin{array}{ccc}
\mathcal{C}^{\infty} & \xrightarrow{\pi} & \mathcal{C}^{\infty} \times \mathcal{C}^{\infty} \\
\downarrow{\iota} & & \downarrow{\pi}
\ast \xrightarrow{id} & \mathcal{C}^{\infty} & \xrightarrow{id} \mathcal{C}^{\infty}.
\end{array}$$

We wish to show that the upper left horizontal map becomes an equivalence after group completion. In other words, we wish to show that the square on the right becomes a pullback square after group completion. Since
the ∞-category of spectra is stable, this is equivalent to the assertion that the square on the right becomes a pushout square after group completion. The left square is clearly a pushout after group completion; it will therefore suffice to show that the outer square is a pushout after group completion. In fact, we claim that the left square is a pushout before group completion. In other words, we claim that $C \simeq \mathbb{C} \otimes \mathbb{C} \simeq \ast$ in the ∞-category of spaces, where the ∞-category $\mathcal{C} \simeq \mathbb{C}$ acts on $S_{2}(\mathcal{C})$ via the construction

$$a : \mathcal{C} \times S_{2}(\mathcal{C}) \to S_{2}(\mathcal{C}) \quad (C, X \to X') \mapsto (X \to X' \oplus C).$$

This is an assertion which can be tested fiberwise over $\mathcal{C} \simeq \mathbb{C}$. In other words, we are reduced to proving the following:

Proposition 11. In the situation of Theorem 10, fix an object $X \in \mathcal{C}$, and let D denote the full subcategory of \mathcal{C}_f spanned by the split cofibrations $X \to X'$. Let $C \simeq \mathbb{C}$ act on the space $D \simeq \mathbb{C}$ as above. Then the homotopy quotient

$$D \simeq \mathbb{C} \simeq C \simeq \mathcal{C} \simeq \ast$$

is contractible.

Proof. Note that the ∞-category D admits finite coproducts (given by pushouts over X), so that $D \simeq \mathbb{C}$ is an E_{∞}-space. We can regard the quotient $D \simeq \mathbb{C} / C \simeq \mathcal{C}$ as the cofiber of the natural map

$$f : \mathcal{C} \simeq \mathbb{C} \to D \simeq \mathbb{C} \simeq C \simeq (X \to X \oplus C)$$

in the ∞-category of E_{∞}-spaces. By construction, the map f is surjective on π_0 so that the quotient $D \simeq \mathbb{C} / C \simeq \mathcal{C}$ is connected. In particular, $D \simeq \mathbb{C} / C \simeq \mathcal{C}$ is grouplike, so it can be identified with (the 0th space of) its group completion. It will therefore suffice to show that the map f induces an equivalence of group completions. Define $q : D \simeq \mathbb{C} \to \mathbb{C} \simeq C \simeq \mathcal{C}$ by the formula $q(X \to X') = X'/X$. The map q is obviously a left homotopy inverse to f. To complete the proof, it will suffice to show that it is also a right homotopy inverse after group completion. In other words, we wish to show that the composite map

$$(f \circ q) : D \simeq \mathbb{C} \to D \simeq \mathbb{C}$$

$$(X \to X') \mapsto (X \to X \oplus (X'/X))$$

is homotopic to the identity map after group completion. In fact, we claim that $(f \circ q)$ is homotopic to the identity map id after adding a single copy of the identity map: that is, to any split cofibration $X \to X'$, we can functorially identify the split cofibrations

$$X \to X' \amalg_X X'$$

$$X \to X' \oplus (X'/X).$$

This identification follows from the additivity assumption on \mathcal{C} (the “fold map” $X' \amalg_X X' \to X$ is split by the inclusion of either factor).

References