We begin by reviewing the definition of an ∞-category.

Notation 1. For every pair of integers $0 \leq i \leq n$, we let Λ^n_i denote the simplicial subset of Δ^n given by the union of all those faces except the one opposite to the ith vertex. We will refer to a simplicial set of the form Λ^n_i as a horn. We will say that it is an inner horn if $0 < i < n$, and otherwise an outer horn.

Definition 2. Let X be a simplicial set. We will say that X is an ∞-category if every map $f_0 : \Lambda^n_i \to X$ can be extended to an n-simplex $f : \Delta^n \to X$ provided that $0 < i < n$. (In other words, every inner horn in X can be filled.)

Remark 3. Simplicial sets satisfying the requirements of Definition 2 are also referred to as quasi-categories or weak Kan complexes.

Example 4. Any Kan complex is an ∞-category (recall that a simplicial set X is a Kan complex if any horn $f_0 : \Lambda^n_i \to X$ can be extended to an n-simplex of X).

Example 5. For any category \mathcal{C}, the nerve $N(\mathcal{C})$ is an ∞-category.

In fact, one has the following stronger assertion:

Exercise 6. Let X be a simplicial set. Show that X is isomorphic to the nerve of a category if and only if every inner horn $f_0 : \Lambda^n_i \to X$ can be extended uniquely to an n-simplex $f : \Delta^n \to X$.

In what follows, we will often abuse notation by identifying a category \mathcal{C} with the ∞-category $N(\mathcal{C})$. This does not lose any information:

Exercise 7. Let \mathcal{C} and \mathcal{D} be categories. Show that there is a bijective correspondence between the set of functors $F : \mathcal{C} \to \mathcal{D}$ and the set of maps of simplicial sets $N(\mathcal{C}) \to N(\mathcal{D})$. In other words, the formation of nerves induces a fully faithful embedding from the category of (small) categories to the category of simplicial sets.

The formation of nerves admits a left adjoint, which sends each simplicial set X to a category which we will denote by hX. Concretely, the category hX admits the following presentation by generators and relations:

- The objects of hX are the vertices of X.
- For each edge e of X joining a vertex x to a vertex y, there is a corresponding morphism $[e]$ from x to y in hX.
- If the edge e is degenerate (so that $x = y$), then $[e] = \text{id}_x$.
For every 2-simplex of X given pictorially by the diagram

\[
\begin{array}{ccc}
 f & \downarrow g & \rightarrow h \\
 x & \downarrow & \rightarrow z,
\end{array}
\]

we have $[h] = [g] \circ [f]$ in hx.

We will refer to hx as the homotopy category of X.

In the special case where X is an ∞-category, the homotopy category hx admits a more concrete description: all morphisms in hx have the form $[e]$ for some edge e, and two edges e and e' (with the same initial and final vertices) satisfy $[e] = [e']$ if and only if they are homotopic (meaning that there exists a 2-simplex

\[
\begin{array}{ccc}
 e & \downarrow & \rightarrow e' \\
 x & \downarrow & \rightarrow y
\end{array}
\]

whose 0th face (joining y to y) is degenerate).

Most of the basic concepts of category theory (commutative diagrams, limits and colimits, initial and final objects, functors, adjunctions) can be generalized to the setting of ∞-categories. We will henceforth make use of those generalizations, and refer the reader to [1] for more details.

In what follows, we will use the notation C to denote an ∞-category (emphasizing the idea that C is some sort of generalized category rather than a simplicial set). We refer to the vertices of C as its objects and to the edges of C as its morphisms.

Definition 8. Let C be an ∞-category. A zero object of C is an object \ast which is both initial and final. We will say that C is pointed if it has a zero object. If C is pointed, then for every pair of objects X and Y there is a canonical morphism from X to Y given by the composition $X \rightarrow \ast \rightarrow Y$, which we refer to as the zero morphism.

Notation 9. Let C be a pointed ∞-category with zero object \ast. Suppose that C admits pushouts. For every morphism $f : X \rightarrow Y$ in C, we let $\text{cofib}(f)$ denote the pushout $Y \amalg_X \ast$. We refer to f as the cofiber of f. In the special case where $Y = \ast$, we refer to $\text{cofib}(f)$ as the suspension of X and denote it by ΣX. Note that we have a diagram

\[
\begin{array}{ccc}
 X & \rightarrow & \text{cofib}(f) \\
 \downarrow f & \rightarrow & \rightarrow \\
 Y & \rightarrow &
\end{array}
\]

where the composition is zero; we refer to such diagrams as cofiber sequences.

Definition 10. Let C be a pointed ∞-category which admits pushouts. We let $K_0(C)$ denote the free abelian group on generators $[X]$, where X is an object of C, modulo the relations given by $[X'] + [X''] = [X]$ whenever there is a cofiber sequence

\[
X' \rightarrow X \rightarrow X''
\]

in C.

Remark 11. Using the cofiber sequence

\[
\ast \rightarrow \ast \rightarrow \ast
\]

we deduce that $[\ast] = 0 \in K_0(C)$. Using the cofiber sequence

\[
X \rightarrow \ast \rightarrow \Sigma(X)
\]

we conclude that $[\Sigma(X)] = -[X]$ in $K_0(C)$.

2
Warning 12. Definition 10 is not interesting for “large” ∞-categories. For example, if C admits infinite coproducts, then any object X fits into a cofiber sequence

$$\coprod_{n \geq 1} X \to \coprod_{n \geq 0} X \to X$$

where the first two terms are equivalent to one another, so that \([X] = 0 \in K_0(C)\); since X was arbitrary, we have \(K_0(C) \cong 0\).

Example 13. Let C be the ∞-category of finite pointed spaces. Then \(K_0(C)\) is isomorphic to \(\mathbb{Z}\), the isomorphism being given by the “reduced” Euler characteristic

\([X] \mapsto \chi_{hyp}(X) = \chi(X) - 1\).

Example 14. Let \(R\) be a ring. A perfect complex over \(R\) is a bounded chain complex

$$\cdots \to P_2 \to P_1 \to P_0 \to P_{-1} \to P_{-2} \to \cdots$$

where each \(P_i\) is a finitely generated projective \(R\)-module. The collection of perfect chain complexes over \(R\) can be organized into an ∞-category \(\text{Mod}^{perf}_R\). There is a natural map \(K_0(R) \to K_0(\text{Mod}^{perf}_R)\) which carries each finitely generated projective \(R\)-module \(P\) to the chain complex consisting of \(P\) in degree zero. One can show that this map is an isomorphism: it has an inverse which carries a chain complex \([P_*]\) to the alternating sum \(\sum_n (-1)^n [P_n]\).

Remark 15. Let C and D be pointed ∞-categories which admit pushouts and suppose we are given a functor \(F: C \to D\) which preserves finite colimits. Then \(F\) induces a group homomorphism \(K_0(C) \to K_0(D)\), given by \([X] \mapsto [F(X)]\).

Example 16. Let \(C\) be a pointed ∞-category which admits pushouts. Then the suspension functor \(\Sigma : C \to C\) satisfies the hypotheses of Remark 15, and induces the map \(K_0(C) \to K_0(C)\) given by multiplication by \(-1\).

Definition 17. We say that an ∞-category \(C\) is stable if it is pointed, admits pushouts, and the suspension functor \(\Sigma : C \to C\) is an equivalence of ∞-categories.

Remark 18. Let \(C\) be a pointed ∞-category which admits pushouts. We define the Spanier-Whitehead category \(SW(C)\) to be the direct limit

\(C \xrightarrow{\Sigma} C \xrightarrow{\Sigma} C \to \cdots\).

Then \(SW(C)\) is stable, and is universal among stable ∞-category which receive a functor from \(C\) which preserves finite colimits. Moreover, \(K_0(SW(C))\) can be identified with the direct limit of the sequence

\(K_0(C) \xrightarrow{-1} K_0(C) \xrightarrow{-1} K_0(C) \to \cdots\),

and is therefore isomorphic to \(K_0(C)\).

In other words, for studying \(K_0\), there is no real loss of generality in assuming that we are working with stable ∞-categories.

In the next lecture, we will need the following result:

Proposition 19. Let \(C\) be a stable ∞-category and let \(C_0 \subseteq C\) be a full (stable) subcategory. Assume that every object of \(C\) is a direct summand of an object that belongs to \(C_0\). Then:

(a) The canonical map \(\alpha : K_0(C_0) \to K_0(C)\) is injective.

(b) An object \(C \in C\) belongs to \(C_0\) if and only if \([C]\) belongs to the image of \(\alpha\).

To prove Proposition 19, it will be convenient to introduce a variant of Definition 10.
Definition 20. Let \mathcal{C} be a stable ∞-category. We let $K_{\text{add}}(\mathcal{C})$ denote the free abelian group generated by symbols $[X]$ where $X \in \mathcal{C}$, modulo the relations

$$[X] = [X'] + [X'']$$

if X is equivalent to a direct sum $X' \oplus X''$.

Remark 21. In the situation of Definition 20, it is easy to see that we have $[X] = [Y]$ in $K_{\text{add}}(\mathcal{C})$ if and only if X and Y are stably equivalent: that is, if and only if there exists an object $Z \in \mathcal{C}$ such that $X \oplus Z$ is equivalent to $Y \oplus Z$.

We have an evident surjective map $K_{\text{add}}(\mathcal{C}) \to K_0(\mathcal{C})$; let us denote the kernel of this map by $I(\mathcal{C})$.

Lemma 22. In the situation of Proposition 19, the canonical map $K_0(\mathcal{C}) \to I(\mathcal{C})$ is surjective.

Proof. Note that $I(\mathcal{C})$ is generated by expressions of the form $\eta = [X] - [X'] - [X'']$, where $X' \to X \to X''$ is a cofiber sequence in \mathcal{C}. For any such cofiber sequence, we can choose objects $Y', Y'' \in \mathcal{C}$ such that $X' \oplus Y'$ and $X'' \oplus Y''$ belong to \mathcal{C}_0. We then have a cofiber sequence

$$X' \oplus Y' \to X \oplus Y' \oplus Y'' \to X'' \oplus Y''$$

where the outer terms belong to \mathcal{C}_0, so that the middle term does as well. It follows that $\eta = [X \oplus Y' \oplus Y''] - [X' \oplus Y'] - [X'' \oplus Y'']$ belongs to the image of the map $I(\mathcal{C}_0) \to I(\mathcal{C})$.

Proof of Proposition 19. It follows immediately from Remark 21 that the map $K_{\text{add}}(\mathcal{C}_0) \to K_{\text{add}}(\mathcal{C})$ is injective. Assertion (a) now follows by applying the snake lemma to the diagram

$$
\begin{array}{ccc}
0 & \longrightarrow & I(\mathcal{C}_0) \\
\downarrow & & \downarrow \\
0 & \longrightarrow & I(\mathcal{C})
\end{array}
\quad
\begin{array}{ccc}
K_{\text{add}}(\mathcal{C}_0) & \longrightarrow & K_0(\mathcal{C}_0) \\
\downarrow & & \downarrow \\
K_{\text{add}}(\mathcal{C}) & \longrightarrow & K_0(\mathcal{C})
\end{array}
\longrightarrow 0.
$$

To prove (b), we note that the snake lemma implies that the natural map

$$K_{\text{add}}(\mathcal{C}) / \text{Im}(K_{\text{add}}(\mathcal{C}_0)) \to K_0(\mathcal{C}) / \text{Im} K_0(\mathcal{C}_0)$$

is an isomorphism of abelian groups. Consequently, if $X \in \mathcal{C}$ has the property that $[X]$ belongs to the image of $K_0(\mathcal{C}_0)$, then $[X]$ belongs to the image of $K_{\text{add}}(\mathcal{C}_0)$. It follows that there exists objects $Y, Y' \in \mathcal{C}_0$ such that $X \oplus Y \simeq Y'$, so that X is equivalent to the cofiber of a map $Y \to Y'$ and therefore belongs to \mathcal{C}_0 as desired.

References