Our goal in this lecture is to prove the following result, which was asserted without proof in the last lecture:

Theorem 1 (Ryll-Nardzewski). Let M be a Banach space, let K be a convex subset of M which is compact with respect to the weak topology on M, and let G be a group of isometries of M which preserves K. Then there is an element of K which is fixed by the action of G.

As a warm-up, we prove the following simpler result:

Proposition 2. Let M be a Banach space, let K be a convex subset of M which is compact with respect to the weak topology on M, and let $F : M \to M$ be a bounded linear map which preserves K (not necessarily an isometry). Then there is an element $x \in K$ satisfying $F(x) = x$.

Proof. For each integer n, let F_n denote the bounded linear map

$$x \mapsto \frac{1}{n}(x + F(x) + F^2(x) + \cdots + F^{n-1}(x)).$$

Since K is convex, each of these maps carries K into itself. Let $K_n = F_n(K) \subseteq K$, so that K_n is a weakly compact subset of K. We first claim that the intersection $\bigcap K_n$ is nonempty. Since K is weakly compact, it will suffice to show that each finite intersection $K_{n_1} \cap \cdots \cap K_{n_m}$ is nonempty. This follows from the observation that this intersection contains

$$F_{n_1}(F_{n_2}(\cdots (F_{n_m}(x))))$$

for each $x \in K$ (note that the operators F_j commute with one another).

Let $x \in \bigcap K_n$. For each integer y, we can write $x = F_n(y)$ for some $y \in K$. It follows that

$$F(x) - x = F\left(\frac{y + \cdots + F^{n-1}y}{n}\right) - \frac{y + \cdots + F^{n-1}y}{n} = \frac{1}{n}(F^n(y) - y) \in \frac{1}{n}(K - K).$$

Since $K - K$ is weakly compact, every weakly open neighborhood of 0 in M contains $\frac{1}{n}(K - K)$ for n large enough. It follows that $F(x) - x$ belongs to every weakly open neighborhood of the origin, so that $F(x) = x$.

We now turn to the proof of Theorem 1. The first observation is:

(a) We may assume without loss of generality that G is finitely generated.
Write G as a union of finitely generated subgroups G_{α}. Then the fixed point set K^{G} is given by the intersection $\bigcap_{\alpha} K^{G_{\alpha}}$. By compactness, if each $K^{G_{\alpha}}$ is nonempty, then K^{G} will be nonempty.

Let us suppose that G contains elements $g_{1}, \ldots, g_{n} \in G$. Let $F : M \to M$ be the linear map given by $F(x) = \frac{g_{1}(x) + \cdots + g_{n}(x)}{n}$, so that F carries K into itself. Using Proposition 2, we can choose an element $x \in K$ such that $F(x) = x$. We will prove that $g_{i}(x) = x$ for all i. Taking the g_{i} to be a set of generators for the group G, we will obtain a proof Theorem 1.

Suppose otherwise. We may assume without loss of generality that there exists some integer $1 \leq m \leq n$ such that $g_{i}(x) \neq x$ for $i \leq m$, and $g_{i}(x) = x$ for $i > m$. Then

$$x = F(x) = \frac{1}{n} \left(\sum_{1 \leq i \leq m} g_{i}(x) \right) + \frac{n - m}{n} x$$

so that

$$\frac{m}{n} x = \frac{1}{n} \sum_{1 \leq i \leq m} g_{i}(x)$$

and therefore x is fixed by the operator $y \mapsto \frac{g_{1}(y) + \cdots + g_{m}(y)}{m}$. We may therefore replace the sequence \{g_{1}, \ldots, g_{m}\} by \{g_{1}, \ldots, g_{m}\}, and thereby reduce to the case where $g_{i}(x) \neq x$ for all i.

To obtain a contradiction, we are free to replace G by the group generated by the elements g_{1}, \ldots, g_{m}, and K by the closed convex hull of the orbit $Gx \subseteq K$ (in the weak topology). In particular, K is contained in the closed subspace of M generated by a countable set of vectors. Replacing M by this closed subspace, we may assume that M is separable.

Choose a real number $\varepsilon > 0$ such that $||g_{i}(x) - x|| > \varepsilon$ for each i. We will need the following technical lemma:

Lemma 3. There exists a weakly compact convex subset $K' \subseteq K$ such that the difference $K - K'$ has diameter $\leq \varepsilon$.

Let us assume Lemma 3 for the moment. Since K is the closed convex hull of Gx and $K' \subseteq K$ is closed and convex, there must exist an element $h \in G$ such that $hx \notin K'$. Then

$$hx = hF(x) = \frac{hg_{1}(x) + \cdots + hg_{n}(x)}{n} \notin K'.$$

Since K' is convex, this implies that $hg_{i}(x) \notin K'$ for some i. Then $hx, hg_{i}(x) \in K - K'$. Since $K - K'$ has diameter $\leq \varepsilon$, we conclude that $||hg_{i}(x) - h(x)|| \leq \varepsilon$. Since h is an isometry, we obtain $||g_{i}(x) - x|| \leq \varepsilon$, contradicting our assumption.

It remains to prove Lemma 3. Let E denote the set of extreme points of K (that is, points which do not lie on the interior of any line segment contained in K). Since K is compact (in the weak topology), the Krein-Milman theorem asserts that K is the closed convex hull of E. Let $E \subseteq K$ denote the weak closure of E. Let B denote the closed ball of radius $\frac{\varepsilon}{3}$ around the origin. Note that B is also closed in the weak topology (since $y \in B$ if and only if $|\phi(y)| \leq \frac{\varepsilon}{3}$ for all linear functionals ϕ of norm 1). Since M is separable, there exists a countable collection of points $y_{i} \in M$ such that the sets $y_{i} + B$ cover M. In particular, the intersections

$$(y_{i} + B) \cap \overline{E}$$

give a countable covering of \overline{E} by weakly closed subsets. Since \overline{E} is weakly compact, the Baire category theorem implies that one of the sets $(y_{i} + B) \cap \overline{E}$ has nonempty interior U in \overline{E} (with respect to the weak topology).

Let K_{1} be the closed convex hull of $\overline{E} - U$ and let K_{2} be the closed convex hull of $(y_{i} + B) \cap \overline{E}$. Then K_{1} and K_{2} are closed convex subsets of K. Since K is the closed convex hull of $E \subseteq (\overline{E} - U) \cup (y_{i} + B)$, it is the convex join of K_{1} and K_{2}. That is, K can be described as the image of the map

$$K_{1} \times K_{2} \times [0, 1] \to M$$
\[(v, w, t) \mapsto tv + (1 - t)w.\]

For \(\delta > 0\), let \(K(\delta)\) denote the image of the restriction of this map to \(K_1 \times K_2 \times [\delta, 1]\). We claim that if \(\delta\) is small enough, then \(K(\delta)\) has the desired properties. It is clear that each \(K_\delta\) is a weakly closed convex subset of \(K\). We are therefore reduced to proving two things:

(i) For \(\delta\) sufficiently small, the set \(K - K(\delta)\) has diameter \(\leq \epsilon\). Note that \(K\) is contained in a ball of some finite radius \(C\) (when regarded as a set of linear operators on \(M^\vee\), \(K\) is pointwise bounded by compactness, hence uniformly bounded). If \(y, y' \in K - K_\delta\), then we can write

\[y = tv + (1 - t)w\]
\[y' = t'v' + (1 - t')w'\]

for \(t, t' < \delta\). Then

\[||y - y'|| \leq t||v|| + t||w|| + t'||v'|| + t'||w'|| + ||w - w'|| \leq 4tC + \frac{2}{3} \epsilon \leq 4\delta C + \frac{2}{3} \epsilon,\]

where the bound on \(||w - w'||\) comes from the observation that \(K_2 \subseteq y_i + B\) has diameter \(\frac{2}{3} \epsilon\). Choosing \(\delta < \frac{\epsilon}{12C}\) will achieve the desired result.

(ii) The set \(K(\delta)\) is distinct from \(K\) if \(\delta\) is positive. Since \(U\) is a nonempty open subset of \(E\), it contains some element \(y \in E\). We claim that \(y \notin K(\delta)\): that is, we cannot write \(y = tv + (1 - t)w\) where \(t \leq 1 - \delta\), \(v \in K_1\), and \(w \in K_2\). Since \(y\) is an extreme point of \(K\), it will suffice to show that \(y \notin K_1\).

Since the weak topology on \(M\) is locally convex, we can choose a (weakly) open convex set \(V \subseteq M\) whose (weak) closure \(\overline{V}\) satisfies \((y - \overline{V}) \cap \overline{E} \subseteq U\). Since \(E - U\) is compact, it admits a finite covering by weakly open sets \(z_1 + V, z_2 + V, \ldots, z_k + V\) where \(z_i \in \overline{E}\). It follows that \(K_1\) is contained in the closed convex hull of \(\bigcup((z_i + V) \cap \overline{E})\), which is contained in the convex join of the sets \((z_i + \overline{V}) \cap K\). If \(y \in K_1\), then since \(y\) is an extreme point of \(K\), we deduce that \(y \in z_i + \overline{V}\) for some \(i\). Then \(z_i \in (y - \overline{V}) \cap \overline{E} \subseteq U\), contradicting our assumption that \(z_i \in \overline{E} - U\).