Let us begin by setting up some terminological conventions which will we will use in this course. We will always work over the field \(\mathbb{C} \) of complex numbers. By an \textit{algebra} we will mean an associative ring \(A \) with a map \(\mathbb{C} \to \text{Z}(A) \) (where \(\text{Z}(A) \) is the center of \(A \)).

Let \(A \) be an algebra. A \textit{norm} on \(A \) is a function \(||| \cdot ||| : A \to \mathbb{R}_{\geq 0} \) satisfying the following axioms:

\[
|||x||| = 0 \text{ if and only if } x = 0 \\
|||x + y||| \leq |||x||| + |||y||| \\
|||\lambda x||| = |\lambda|||x||| \text{ if } \lambda \in \mathbb{C} \\
|||xy||| \leq |||x||| \cdot |||y|||
\]

Every norm on \(A \) determines a metric \(d \), given by \(d(x, y) = |||x - y||| \). We will say that \(A \) is \textit{complete} if is complete with respect to this metric. A \textit{Banach algebra} is a complete normed algebra.

\textbf{Remark 1.} Unless otherwise specified, we will always assume that our algebras are equipped with a unit. We will encounter nonunital algebras as well. In this case, some of the above definitions need to be modified.

\textbf{Example 2.} Let \(X \) be a compact topological space. Then the algebra \(\mathcal{C}^0(X) \) of continuous functions on \(X \) is a Banach algebra.

\textbf{Example 3.} Let \(V \) be a Hilbert space (or, more generally, a Banach space) and let \(\mathcal{B}(V) \) be the algebra of bounded operators on \(V \). Then \(\mathcal{B}(V) \) is a Banach algebra with respect to the \textit{operator norm}, given by

\[
||f|| = \sup \{|f(v)||, 0\}_{v \in V; ||v|| = 1}
\]

\textbf{Example 4.} Let \(G \) be a locally compact group, and let \(L^1(G) \) denote the Banach space of integrable functions on \(G \) (with respect to Haar measure). The operation of convolution equips \(L^1(G) \) with the structure of a Banach algebra. This Banach algebra is not unital unless \(G \) is discrete. However, it can be embedded in the larger \textit{unital} Banach algebra \(M(G) \) of finite Borel measures on \(G \) (where multiplication is again given by convolution, and the identity element is given by the point measure supported at the identity of \(G \)).

\textbf{Proposition 5.} Let \(A \) be a Banach algebra. Then the collection of invertible elements of \(A \) is open.

\textit{Proof.} Let \(x \in A \) be invertible; we wish to show that \(x \) has an open neighborhood in \(A \) consisting of invertible elements. Multiplying by \(x^{-1} \) (which is a homeomorphism of \(A \) with itself), we can reduce to the case \(x = 1 \). In this case, we wish to show that \(1 + y \) is invertible provided that the norm of \(y \) is sufficiently small. The inverse of \(1 + y \) is given by the power series

\[
1 - y + y^2 - y^3 + y^4 - \cdots,
\]

which converges for \(||y|| < 1 \).

\qed
Definition 6. Let A be a Banach algebra and let $x \in A$. The spectrum of x is the set of complex numbers λ such that $x - \lambda$ is not invertible. We will denote the spectrum of x by $\sigma(x)$. It follows from Proposition 5 that $\sigma(x)$ is a closed subset of the complex numbers.

Proposition 7. Let A be a nonzero Banach algebra and let $x \in A$. Then the spectrum $\sigma(x)$ is nonempty.

Proof. Suppose otherwise; then the difference $\lambda - x$ is invertible for each $\lambda \in \mathbb{C}$. Let $\phi : A \to \mathbb{C}$ be a continuous linear functional. One can show that the map $\lambda \mapsto \phi\left(\frac{1}{\lambda - x}\right)$ is a holomorphic function on the complex numbers, which is bounded (in fact, it vanishes at infinity). It follows from complex analysis that this function is constant. Since ϕ is arbitrary, we deduce that the function $\lambda \mapsto \lambda - x$ is constant. This is only possible if $A = 0$. \qed

Corollary 8 (Gelfand-Mazur). Let A be a Banach division algebra. Then $A \simeq \mathbb{C}$.

Proof. Let $x \in A$. Since $A \neq 0$, the spectrum $\sigma(x)$ is nonzero. Choose $\lambda \in \sigma(x)$, so that $\lambda - x$ is not invertible. Since A is a division algebra, we deduce that $\lambda - x = 0$, so that $x = \lambda$. It follows that every element of A is a scalar. \qed

We can regard Corollary 8 as a Banach-algebraic analogue of Hilbert’s Nullstellensatz:

Corollary 9. Let A be a commutative Banach algebra, and let m be a maximal ideal in A. Then the quotient A/m is isomorphic to \mathbb{C}.

Proof. Let \overline{m} be the closure of m. Proposition 5 implies that there is an open neighborhood U of the identity element $1 \in A$ consisting of invertible elements, which cannot intersect m. It follows that $1 \notin \overline{m}$, so that \overline{m} is a proper ideal of A. The maximality of m implies that $m = \overline{m}$, so that m is closed. Then the quotient A/m inherits a complete norm, and is therefore a Banach algebra in its own right. Since m is maximal, A/m is a field. Applying Corollary 8, we deduce that $A/m \simeq \mathbb{C}$. \qed

Note that if A is a Banach algebra, the spectrum of an element $x \in A$ cannot contain any complex number $\lambda > ||x||$, since for $\lambda > ||x||$ the formal series

$$1 + \frac{x}{\lambda} + \frac{x^2}{\lambda^2} + \frac{x^3}{\lambda^3} + \cdots$$

will converge to an inverse of $1 - \frac{x}{\lambda}$. It follows that $\sigma(x)$ is a closed and bounded subset of \mathbb{C}, hence compact.

Definition 10. Let A be a Banach algebra and let $x \in A$. The spectral radius of x is given by

$$\rho(x) = \max\{|\lambda| : \lambda \in \sigma(x)\}.$$

Our first nontrivial result is the following:

Theorem 11 (Gelfand’s Spectral Radius Formula). Let A be a Banach algebra and let $x \in A$. Then

$$\rho(x) = \limsup ||x^n||^{\frac{1}{n}}.$$

Remark 12. One can say more: for example, the sequence $||x^n||^{\frac{1}{n}}$ converges to $\rho(x)$. We will not need this.

Proof. It will suffice to show that for every positive real number ϵ, we have

$$\epsilon < \rho(x) \iff \epsilon < \limsup ||x^n||^{\frac{1}{n}}.$$
Suppose first that \(\limsup \|x^n\|^{\frac{1}{n}} \leq \epsilon \). We wish to show that \(\rho(x) \leq \epsilon \); that is, that \(x - \lambda \) is invertible whenever \(|\lambda| > \epsilon \). Rescaling if necessary, we may assume that \(\lambda = 1 \) (so that \(\epsilon < 1 \)). Choose \(\epsilon < \delta < 1 \). Since \(\limsup \|x^n\|^{\frac{1}{n}} \leq \epsilon \), we conclude that \(\|x^n\|^{\frac{1}{n}} \leq \delta \) for almost every integer \(n \). It follows that the power series \(1 + x + x^2 + \cdots \) converges absolutely in \(A \) to an inverse of \(1 - x \).

Suppose that \(\limsup \|x^n\|^{\frac{1}{n}} > \epsilon \); we wish to prove that \(\rho(x) > \epsilon \). Rescaling if necessary, we may assume that \(\epsilon = 1 \). Choose \(\delta \) with \(1 < \delta < \delta^2 < \limsup \|x^n\|^{\frac{1}{n}} \), so that \(\|x^n\| \geq \delta^{2^n} \) for infinitely many values of \(n \). It follows that the sequence \(1, \frac{x}{\delta}, \frac{x^2}{\delta^2}, \ldots \) is unbounded in \(A \). Let \(A^\vee \) denote the dual space of \(A \), and think of the elements \(x^i \) as linear functionals on \(A^\vee \). Using the uniform boundedness principle, we deduce that there exists a continuous linear functional \(\phi \in A^\vee \) such that the sequence \(\phi(1), \phi(\frac{x}{\delta}), \phi(\frac{x^2}{\delta^2}), \ldots \) is unbounded. Consider the function \(\lambda \mapsto \phi(\frac{\lambda}{\lambda - 2}) \), which is well-defined an holomorphic for \(\lambda \notin \sigma(x) \). For \(|\lambda| \) large, this function is given by

\[
\phi(1) + \phi(\frac{x}{\delta}) + \phi(\frac{x^2}{\delta^2}) + \cdots.
\]

If \(\rho(x) \leq 1 \), then complex analysis implies that this series converges absolutely \(|\lambda| > 1 \). Since it does not converge absolutely for \(\lambda = \delta \), we obtain a contradiction.

Corollary 13. Let \(A \) be a Banach algebra and let \(\chi : A \rightarrow C \) be an algebra homomorphism. Then \(\chi \) has norm \(\leq 1 \). In particular, \(\chi \) is continuous.

Proof. Let \(x \in A \). We wish to show that \(|\chi(x)| \leq \|x\| \). Assume otherwise; then \(|\chi(x)| > \|x\| \geq \rho(x) \), so that \(\chi(x) - x \) is invertible in \(A \). This is a contradiction, since the image of \(\chi(x) - x \) in \(C \) is zero.

Definition 14. Let \(A \) be a commutative Banach algebra. The spectrum of \(A \) is the collection of algebra homomorphisms \(\chi : A \rightarrow C \) (automatically continuous, by Corollary 13). We denote the spectrum of \(A \) by \(\text{Spec} \ A \).

Remark 15. Let \(A \) be a commutative Banach algebra and let \(x \in A \). A complex number \(\lambda \) belongs to the spectrum \(\sigma(x) \) if and only if \(\lambda - x \) is not invertible: that is, if and only if \(\lambda - x \) generates a nontrivial ideal in \(A \). Since every nontrivial ideal in \(A \) is contained in a maximal ideal, we see that \(\lambda \in \sigma(x) \) if and only if \(\lambda - x \) is contained in a maximal ideal of \(A \), which is then the kernel of an algebra homomorphism \(\chi : A \rightarrow C \). We deduce that \(\sigma(x) = \{ \chi(x) : \chi \in \text{Spec} \ A \} \).

Let us regard \(\text{Spec} \ A \) as a subset of the product

\[
\prod_{x \in A} \sigma(x).
\]

It is easy to see that \(\text{Spec} \ A \) is closed (with respect to the product topology on \(\prod_{x \in A} \sigma(x) \)), and therefore inherits the structure of a compact Hausdorff space.

We now study algebras with a bit more structure.

Definition 16. A \(* \)-algebra is an algebra \(A \) equipped with a map \(x \mapsto x^* \) satisfying the following axioms:

\[
(xy)^* = y^* x^* \quad (x + y)^* = x^* + y^* \quad \lambda^* = \overline{\lambda} \text{ if } \lambda \in C \quad x^{**} = x
\]

A \(C^* \)-algebra is a Banach \(* \)-algebra whose norm satisfies the following identity:

\[
\|x\|^2 = \|x^* x\|
\]

Example 17. Let \(X \) be a compact Hausdorff space. Then \(C^0(X) \) is a \(C^* \)-algebra, with involution given by complex conjugation of functions.
Example 18. Let V be a Hilbert space. Then the algebra of bounded operators $B(V)$ is a $*$-algebra, where we take f^* to be the adjoint of f, characterized by the formula

$$(f^* v, w) = (v, f w).$$

In fact, it is a C^*-algebra. The inequality $||x^* x|| \leq ||x^*|| ||x|| = ||x|| ||x|| = ||x||^2$ is obvious. To prove the reverse inequality $||x||^2 \leq ||xx^*||$, it will suffice to show that for any positive real number $\epsilon < ||x||$, there exists a vector $v \in V$ with $||v|| = 1$ and $||x^* xv|| > \epsilon^2$. Using the definition of $||x||$, we can choose v such that $||xv|| > \epsilon$, so that

$$\epsilon^2 > ||xv||^2 = (xv, xv) = (x^* xv, v) \leq ||x^* xv||.$$

Example 19. Let G be a unimodular locally compact group and regard $L^1(G)$ as a nonunital Banach algebra via convolution. Then $L^1(G)$ is equipped with the structure of a $*$-algebra, given by

$$f^*(g) = \overline{f(g^{-1})}.$$

It is generally not a C^*-algebra.

Notation 20. Let A be a $*$-algebra. We say that an element $x \in A$ is Hermitian or self-adjoint if $x = x^*$. We say that x is skew-Hermitian or skew-adjoint if $x^* = -x$. Every element $x \in A$ admits a unique decomposition $x = \Re(x) + \Im(x)$, where $\Re(x) = \frac{x + x^*}{2}$ is self-adjoint and $\Im(x) = \frac{x - x^*}{2}$ is skew-adjoint.

We say that an element $x \in A$ is normal if x and x^* commute; equivalently, x is normal if $\Re(x)$ and $\Im(x)$ commute.

Proposition 21. Let A be a C^*-algebra and let $x \in A$ be a normal element. Then $||x^n|| = ||x||^n$ for every positive integer n.

Proof. It will suffice to show that $||x^n||^2 = ||x||^{2n}$. Applying the C^*-identity, we can rewrite this as $||x^n x^n|| = ||x^* x^n||$. Since x is normal, the left hand side can be rewritten $||x^n x^n||$. We may therefore replace x by $x^* x$ and thereby reduce to the case where x is Hermitian. In this case, the C^*-identity gives $||x^n|| = ||x||^n$. Iterating this argument, we obtain

$$||x^k|| = ||x||^k.$$

Choose an integer m such that $m + n$ is a power of 2. We then have

$$||x^{m+n}|| = ||x^m x^n|| \leq ||x^m|| ||x^n|| \leq ||x||^m ||x||^n = ||x||^{m+n}.$$

Since equality holds, we must have equality throughout. Assuming $x \neq 0$, this gives

$$||x^m|| = ||x||^m ||x|| = ||x||^n.$$

Corollary 22. Let A be a C^* algebra and let $x \in A$ be a normal element. Then the spectral radius $\rho(x)$ coincides with the norm $||x||$.

Proof. Combine the spectral radius formula (Theorem 11) with Proposition 21.

For any commutative Banach algebra A, each element $x \in A$ determines a continuous map $\text{Spec} \ A \to \mathbf{C}$, given by $\chi \mapsto \chi(x)$. This map is an algebra homomorphism, called the Gelfand transform.

Proposition 23. Let A be a commutative C^*-algebra. Then the Gelfand transform $u : A \to C^0(\text{Spec} \ A)$ is an isomorphism of C^*-algebras.
Proof. We first show that \(u \) is a map of \(*\)-algebras. Equivalently, we claim that every character \(\chi : A \to \mathbb{C} \) satisfies \(\chi(x^*) = \overline{\chi(x)} \). It will suffice to show that \(\chi \) carries Hermitian elements \(x \in A \) to real numbers. Define \(f : \mathbb{R} \to A \) by the formula
\[
f(t) = e^{itx} = \sum_{n} \frac{(itx)^{n}}{n!}.
\]
Then \(f \) satisfies \(f(t)^{-1} = f(-t) = f(t)^* \), so that the \(C^* \)-identity gives
\[
||f(t)||^2 = ||f(t)^* f(t)|| = 1.
\]
Since \(\chi \) is continuous and has norm \(\leq 1 \) (Corollary 13), we obtain
\[
1 \geq |\chi f(t)| = e^{it\chi(x)}.
\]
Since this is true for both positive and negative values of \(t \), we must have \(\chi(x) \in \mathbb{R} \).

We now note that the Gelfand transform \(u \) is isometric: for \(x \in A \) we have
\[
||u(x)|| = \sup \{|\chi \in \text{Spec } A : |\chi(x)|\} = \rho(x) = ||x||
\]
by Corollary 22. It follows that \(u \) is an isomorphism from \(A \) onto a closed \(*\)-subalgebra of \(C^0(\text{Spec } A) \). This subalgebra separates points: if \(\chi, \chi' \in \text{Spec } A \) are distinct, then we can choose \(x \in A \) such that \(\chi(x) \neq \chi'(x) \).

Applying the Stone-Weierstrass theorem, we deduce that the image of \(u \) is the whole of \(C^0(\text{Spec } A) \), so that \(u \) is an isomorphism.

Corollary 24. Every commutative \(C^* \)-algebra is isomorphic to \(C^0(X) \) for some compact Hausdorff space \(X \). Moreover, we can canonically recover \(X \) as the spectrum \(\text{Spec } A \).