In this lecture, we will complete our algebraic characterization of von Neumann algebra morphisms by proving the following result:

Lemma 1. Let A be a von Neumann algebra and let $\mu : A \to \mathbb{C}$ be a linear functional. If μ is ultra-strongly continuous on the unit ball $A_{\leq 1}$, then μ is ultraweakly continuous.

In fact, we will prove the following:

Proposition 2. Let A be a von Neumann algebra with unit ball $A_{\leq 1}$, and let $\mu : A \to \mathbb{C}$ be a linear functional. The following conditions are equivalent:

1. μ is ultraweakly continuous.
2. The kernel $\ker(\mu)$ is closed in the ultraweak topology.
3. μ is ultrastrongly continuous on $A_{\leq 1}$.
4. The set $\ker(\mu) \cap A_{\leq 1}$ is ultraweakly closed.
5. $\ker(\mu)$ is closed in the ultrastrong topology.
6. The set $\ker(\mu) \cap A_{\leq 1}$ is ultrastrongly closed.

We have an obvious web of implications

\[
\begin{array}{cccc}
(a) & (c) & (c') & (a') \\
& (d) & (d') & \\
(b) & & (b') & \\
& (a) & (c') & (d) \\
& & (d') & \\
\end{array}
\]

In particular, condition (a) is the strongest and condition (d') is the weakest. The results of the last lecture shows that a completely additive state satisfies (d'), and that a state which satisfies (a) is completely additive. We will prove Proposition 2 by showing that (d') \Rightarrow (a). Actually, we will proceed by showing that

(d') \Rightarrow (c') \Rightarrow (a') \Rightarrow (a).
The implications \((a') \Rightarrow (a)\) and \((b') \Rightarrow (b)\) are easy. If \(\ker(\mu)\) is closed (for whatever topology), then the quotient topology on \(A/\ker(\mu)\) is Hausdorff, and therefore agrees with the standard topology on \(A/\ker(\mu) \cong C\). It follows that the composite map \(A \to A/\ker(\mu) \to C\) is continuous.

Lemma 3. We have \((b) \Rightarrow (a)\). That is, every ultrastrongly continuous functional on a von Neumann algebra \(A \subseteq B(V)\) is ultraweakly continuous.

Proof. Let \(\mu : A \to B(V)\) be ultrastrongly continuous. Then there exists a vector \(v \in V^{\oplus \infty}\) such that \(|\mu(x)| \leq ||x(v)||\) for each \(x \in A\). Replacing \(V\) by \(V^\infty\), we can assume \(v \in V\). Define a functional \(\mu_0 : Av \to C\) by the formula \(\mu_0(x(v)) = \mu(x)\) (this is well-defined: if \(x(v) = y(v)\), then \((x-y)(v) = 0\), so that \(\mu(x-y) = 0\) and \(\mu(x) = \mu(y)\)). We have \(|\mu_0(x(v))| = |\mu(x)| \leq ||x(v)||\), so that \(\mu_0\) has operator norm \(\leq 1\). It follows that \(\mu_0\) extends to a continuous functional on the closure \(V_0 = \overline{Av} \subseteq V\). Since \(V_0\) is a Hilbert space, this functional is given by inner product with some vector \(w \in V_0\). Then

\[
\mu(x) = (x(v), w),
\]

so that \(\mu\) is ultraweakly continuous. \(\square\)

We will need the following basic result from the theory of convexity:

Theorem 4. Let \(W\) be a locally convex topological vector space (over the real numbers, say), and let \(K \subseteq W\). The following conditions are equivalent:

1. The set \(K\) is closed and convex.
2. There exists a collection of continuous functionals \(\lambda_\alpha : W \to \mathbb{R}\) and a collection of real numbers \(C_\alpha\) such that \(K = \{w \in W : (\forall \alpha)[\lambda_\alpha(w) \geq C_\alpha]\}\).

Proof. We may assume without loss of generality that \(K\) contains the origin. Let \(v \in W - K\). Since \(K\) is closed, there exists an open neighborhood \(U\) of the origin such that \((v + U) \cap K = \emptyset\). Since \(W\) is locally convex, we can assume that \(U\) is convex. Then \(K + U\) is a convex subset of the origin. For \(w \in W\), define

\[
||w|| = \inf\{t \in \mathbb{R}_{>0} : tw \in K + U\}.
\]

This is almost a prenorm on \(W\): the convexity of \(K + U\) gives

\[
||w + w'|| \leq ||w|| + ||w'||,
\]

and we obviously have

\[
||tw|| = t||w||
\]

for \(t \geq 0\). This generally does not hold for \(t < 0\): that is, we can have \(||w|| \neq ||-w||\). Note that \(||v|| \geq 1\) (since \(v \notin K + U\)). Define \(\mu : \mathbb{R}v \to \mathbb{R}\) by the formula \(\mu(tv) = t\), so that \(\mu\) satisfies the inequality \(\mu(w) \leq ||w||\) for \(w \in \mathbb{R} v\). The proof of the Hahn-Banach theorem allows us to extend \(\mu\) to a function on all of \(W\) satisfying the same condition. We have \(|\mu(w)| = \pm \mu(w) \leq 1\) for \(w \in U \cap -U\), so that \(\mu\) is continuous. Since \(\mu(v) = 1\), \(\mu\) does not vanish so there exists \(u \in U\) with \(\mu(u) = \epsilon > 0\). Then for \(k \in K\), we have \(\mu(k + u) \leq 1\), so that \(\mu(k) \leq 1 - \mu(u)\). Then

\[
\{w \in W : \mu(w) \leq 1 - \mu(u)\}
\]

is a closed half-space containing \(K\) which does not contain \(v\). \(\square\)

Corollary 5. Let \(A\) be a von Neumann algebra, and let \(K \subseteq A\) be a convex subset. Then \(K\) is closed for the ultraweak topology if and only if \(K\) is closed for the ultrastrong topology.

From Corollary 5 we get the implications \((b') \Rightarrow (a')\) and \((d') \Rightarrow (c')\). To complete the proof, it suffices to show that \((c') \Rightarrow (a')\). Recall that \(A\) admits a Banach space predual \(E\), and that the ultraweak topology on \(A\) coincides with the weak \(*\)-topology. The implication \((c') \Rightarrow (a')\) is a special case of the following more general assertion:
Theorem 6 (Kreĭn-Smulian). Let E be a real Banach space and let $K \subseteq E^\vee$ be a convex set. For each real number $r \geq 0$, we let $E_{\leq r}$ denote the closed unit ball of radius r in E^\vee. If each of the intersections $K_{\leq r} = K \cap E_{\leq r}$ is closed for the weak $*$-topology, then K is closed for the weak $*$-topology.

Proof. Let $v \in E - K$; we wish to show that v does not belong to the weak $*$-closure of K. Replacing K by $K - v$, we can reduce to the case where $v = 0$. Since each $K_{\leq r}$ is closed in the weak $*$-topology, it is also closed in the norm topology. It follows that K is closed in the norm topology. In particular, since $0 \notin K$, there exists a real number $\epsilon > 0$ such that $E_{\leq \epsilon}$ does not intersect K. By rescaling, we can assume that $\epsilon = 1$.

We construct a sequence of finite subsets $S_1, S_2, S_3, \ldots \subseteq E$ with the following properties:

(a) If $\mu \in K_{\leq n+1}$, then there exists $v \in S_1 \cup \cdots \cup S_n$ such that $\mu(v) > 1$.

(b) If $v \in S_n$, then $||v|| = \frac{1}{n}$.

Assume that S_1, \ldots, S_{n-1} have been constructed, and set

$$K(n) = K_{\leq n+1} \cap \{ \mu \in E : (\forall v \in S_1 \cup \cdots \cup S_{n-1}) [\mu(v) \leq 1] \}$$

Then $K(n)$ is a weak $*$-closed subset of E^\vee which is bounded in the norm topology, and is therefore weak $*$-compact. By construction, $K(n)$ does not intersect $K_{\leq n}$. It follows that if $\mu \in K(n)$, then $||\mu|| > n$. We may therefore choose a vector $v \in E$ with $||v|| = \frac{1}{n}$ such that μ belongs to the set $U_n = \{ \rho \in E^\vee : \rho(v) > 1 \}$ (which is open for the weak $*$-topology). Since $K(n)$ is compact, we can cover $K(n)$ by finitely many such open sets $U_{v_1}, U_{v_2}, \ldots, U_{v_m}$. We then take $S_n = \{ v_1, \ldots, v_m \}$.

Let $S = \bigcup S_i$. Then S is a countable subset of E; we can enumerate its elements as v_1, v_2, \ldots (if S is finite, we can extend this sequence by adding a sequence of zeros at the end). By construction, this sequence converges to zero in the norm topology on E. Let $C^0(\mathbb{Z}_{>0})$ denote the Banach space consisting of continuous maps

$$\mathbb{Z}_{>0} \to \mathbb{R}$$

which vanish at infinity: that is, the Banach space of sequences $(\lambda_1, \lambda_2, \ldots)$ which converge to zero. We have a map

$$f : E^\vee \to C^0(\mathbb{Z}_{>0})$$

given by $\mu \mapsto (\mu(v_1), \mu(v_2), \cdots)$. The image $f(K)$ is a convex subset of $C^0(\mathbb{Z}_{>0})$. By construction, if $\mu \in K$ then $\mu(v_i) > 1$ for some i, so that $f(K)$ does not intersect the unit ball of $C^0(\mathbb{Z}_{>0})$. It follows that 0 does not belong to the closure of $f(K)$. Applying Theorem 4, we see that there is a continuous functional $\rho : C^0(\mathbb{Z}_{>0}) \to \mathbb{R}$ such that $\rho(K) \subseteq \mathbb{R}_{\geq 1}$. This functional is given by a summable sequence of real numbers (c_1, c_2, \ldots), and satisfies

$$\sum c_i \mu(v_i) \geq 1$$

for each $\mu \in K$. Set $v = \sum c_i v_i$; then $v \in E$ is a vector satisfying $\mu(v) \geq 1$ for $\mu \in K$. Then K is contained in the weak $*$-closed set $\{ \mu \in E^\vee : \mu(v) \geq 1 \}$, so that 0 does not belong to the closure of K. \hfill \Box