The Chromatic Convergence Theorem (Lecture 32)

April 20, 2010

Fix a prime number p. For any p-local spectrum X, one can arrange its $E(n)$-localizations into the chromatic tower

$$
\cdots \rightarrow L_{E(2)}X \rightarrow L_{E(1)}X \rightarrow L_{E(0)}X.
$$

Our goal in this lecture and the next is to prove the following result:

Theorem 1 (Chromatic Convergence). If X is a finite p-local spectrum, then X is a homotopy limit of its chromatic tower.

Remark 2. The collection of p-local spectra which satisfy the conclusion of Theorem 1 is obviously thick. It therefore suffices to prove Theorem 1 for a single p-local spectrum of type 0: for example, the p-local sphere.

For every spectrum X, let $C_n(X)$ denote the homotopy fiber of the map $X \rightarrow L_{E(n)}X$. Then $\lim C_n(X)$ is the homotopy fiber of the map $X \rightarrow \varprojlim L_{E(n)}X$. The chromatic convergence theorem is therefore equivalent to the following:

Theorem 3. The homotopy limit of the tower $\{C_n(S_p)\}$ is trivial. Even better: for every integer m, the tower of abelian groups $\{\pi_m C_n(S_p)\}$ is trivial (as a pro-abelian group).

The starting point for Theorem 3 is the following result, which we will prove in the next lecture:

Proposition 4. Each of the maps $C_n(S_p) \rightarrow C_{n-1}(S_p)$ induces the zero map $MU_*(C_n(S_p)) \rightarrow MU_*(C_{n-1}(S_p))$.

Let us assume Proposition 4 and see how it leads to a proof of Theorem 3. To this end, we recall the definition of the Adams-Novikov filtration on the homotopy groups π_*X of a spectrum X. Let I denote the homotopy fiber of the unit map $S \rightarrow MU$. There is an evident map $I \rightarrow S$, which induces a map $I^m \rightarrow S$ for each m. We say that an element $x \in \pi_*X$ has Adams-Novikov filtration $\geq m$ if x lies in the image of the map $\pi_*(I^m \otimes X) \rightarrow \pi_*X$.

Lemma 5. Let $f : X \rightarrow Y$ be a map of spectra such that f induces the zero map $\theta : MU_*(X) \rightarrow MU_*(Y)$. Then f increases Adams-Novikov filtration. That is, if $x \in \pi_*X$ has Adams-Novikov filtration $\geq m$, then $f(x) \in \pi_*Y$ has Adams-Novikov filtration $\geq m + 1$.

Proof. Lift x to a class $\overline{x} \in \pi_*(I^m \otimes X)$. We then obtain $f(\overline{x}) \in \pi_*(I^m \otimes Y)$ lifting y. To lift y to $\pi_*(I^{m+1} \otimes Y)$, it suffices to show that the image of \overline{y} vanishes in $I^m \otimes Y \otimes MU$. Consequently, it will suffice to show that f induces the zero map

$$
\theta_m : MU_*(I^m \otimes X) \rightarrow MU_*(I^m \otimes Y).
$$

Recall that $MU_*(MU) \simeq (\pi_*MU)[b_1, b_2, \ldots]$ is a free π_* MU-module on a basis consisting of monomials in the b_i. It follows that $MU_*(\Sigma I)$ is a free π_* MU-module on a basis consisting of monomials of positive length in the b_i. In particular, $MU \otimes I$ is a free module over MU, so we have Kunneth decompositions

$$
MU_*(I^m \otimes X) = MU_*(I)^m \otimes_{\pi_*,MU} MU_*(X)
$$

$$
MU_*(I^m \otimes Y) = MU_*(I)^m \otimes_{\pi_*,MU} MU_*(Y)
$$

Since $\theta = 0$, it follows that $\theta_m = 0$. \qed
Combining Lemma 5 with Proposition 4, we deduce:

Proposition 6. For all \(m, n, \) and \(s \), the image of the map

\[
\pi_n C_{m+s} S(p) \rightarrow \pi_n C_{m} S(p)
\]

consists of elements having Adams-Novikov filtration \(\geq s \).

To complete the proof of Theorem 3, it will suffice to show the following:

Proposition 7. For every pair of integers \(m \) and \(n \), the Adams-Novikov filtration on \(\pi_n C_m (S(p)) \) is finite. That is, there exists an integer \(s \) such that every element \(x \in \pi_n C_m (S(p)) \) of Adams-Novikov filtration \(\geq s \) is trivial.

Let us now introduce some terminology which will be useful for proving Proposition 7.

Definition 8. Let \(f : X \rightarrow Y \) be a map of spectra. We say that \(f \) is phantom below dimension \(n \) if the following condition is satisfied: for every finite spectrum \(F \) of dimension \(\leq n \) and every map \(u : F \rightarrow X \), the composition \(f \circ u \) is nullhomotopic.

Remark 9. The map \(f \) is phantom if and only if it is phantom below dimension \(n \), for every integer \(n \).

Definition 10. A spectrum \(X \) is MU-convergent if, for every integer \(n \), there exists \(s \) such that the map \(I^s \otimes X \rightarrow X \) is phantom below dimension \(n \).

If \(X \) is MU-convergent and \(n, s \) are as in Definition 10, then the map \(I^s \otimes X \rightarrow X \) is trivial on \(\pi_n \) and so every element of \(\pi_n X \) having Adams-Novikov filtration \(\geq s \) is zero. Proposition 7 is therefore a consequence of the following:

Proposition 11. Let \(X \) be any connective spectrum. Then \(C_m (X) \) is MU-convergent for each \(m \geq 0 \).

We need a few preliminary observations.

Lemma 12. Let \(f : X \rightarrow Y \) phantom below dimension \(n \), and let \(W \) be a connective spectrum. Then the induced map \(X \otimes W \rightarrow Y \otimes W \) is phantom below dimension \(n \).

Proof. Let \(F \) be a finite spectrum of dimension \(\leq n \) and consider a map \(u : F \rightarrow X \otimes W \). We wish to prove that \((f \otimes \text{id}_W) \circ u \) is nullhomotopic. We can write \(W \) as a filtered colimit of finite connective spectra \(W_\alpha \). Since \(F \) is finite, \(u \) factors through \(X \otimes W_\alpha \) for some \(\alpha \). Replacing \(W \) by \(W_\alpha \), we may assume that \(W \) is finite. In this case, we can identify \(u \) with a map \(v : DW \otimes F \rightarrow X \). Since \(W \) is connective, \(DW \otimes F \) has dimension \(\leq n \); it follows that \(f \circ v \) is nullhomotopic so that \((f \otimes \text{id}_W) \circ u \) is nullhomotopic.

Lemma 13. Suppose we are given a fiber sequence of spectra

\[
X \rightarrow Y \rightarrow Z.
\]

If \(X \) and \(Z \) are MU-convergent, then \(Y \) is MU-convergent.

Proof. Fix an integer \(n \), and choose \(s \) such that the maps \(I^s \otimes X \rightarrow X \) and \(K^s \otimes Z \rightarrow Z \) are phantom below \(n \). We will show that the map \(I^{2s} \otimes Y \rightarrow Y \) is phantom below \(n \). Let \(F \) be a finite spectrum of dimension \(\leq n \) with a map \(u : F \rightarrow I^{2s} \otimes Y \). Since \(I^{2s} \otimes Z \rightarrow I^s \otimes Z \) is phantom below \(n \) (Lemma 12), the composite map

\[
F \rightarrow I^{2s} \otimes Y \rightarrow I^{2s} \otimes Z \rightarrow I^s \otimes Z
\]

is nullhomotopic. It follows that the composition

\[
F \otimes I^{2s} \otimes Y \rightarrow I^{s} \otimes Y
\]
factors through some map \(v : F \to I^\otimes s \otimes X \). Then the composition

\[
F \xrightarrow{u} I^\otimes 2s \otimes Y \to Y
\]

is given by

\[
F \xrightarrow{v} I^\otimes s \otimes X \to X \to Y
\]

and is therefore nullhomotopic.

Lemma 14. Let \(X \) be an MU-module spectrum. Then \(X \) is MU-convergent.

Proof. The unit map \(X \to MU \otimes X \) admits a section, given by the action of \(MU_p \) on \(X \). This is equivalent to the statement that the map \(I \otimes X \to X \) is nullhomotopic (and hence phantom below \(n \), for any \(n \)).

Lemma 15. Let \(X \) be any spectrum. For each \(n \geq 0 \), the spectrum \(L_{E(n)} X \) is MU-convergent.

Proof. Let \(X^\bullet = E(n)^{\otimes (\bullet+1)} \otimes X \) and let \(\{ \text{Tot}^m X^\bullet \} \) be the \(E(n) \)-based Adams tower of \(X \). The proof of the smash product theorem shows that \(\{ \text{Tot}^m X^\bullet \} \) is equivalent to the constant tower with value \(L_{E(n)} X \). It follows that \(L_{E(n)} X \) is a retract of \(\text{Tot}^m X^\bullet \) for some \(m \). It therefore suffices to show that each \(\text{Tot}^m X^\bullet \) is MU-convergent. Each \(\text{Tot}^m X^\bullet \) is a finite homotopy inverse limit of the spectra \(X^k \); by Lemma 13 it suffices to show that each \(X^k \) is MU-convergent. But \(X^k \simeq E(n)^{\otimes k+1} \otimes X \) has the structure of an \(E(n) \)-module spectrum. Since \(E(n) \) is complex orientable, there is a map of ring spectra \(MU \to E(n) \) so that \(X^k \) admits an MU-module structure; the desired result now follows from Lemma 14.

Lemma 16. Let \(X \) be a connective spectrum. Then \(X \) is MU-convergent.

Proof. We claim that for any finite CW complex \(F \) of dimension \(\leq n \) and any map \(u : F \to I^{\otimes n+1} \otimes X \), the composite map \(u : F \to I^{\otimes n+1} \otimes X \to X \) is nullhomotopic. In fact, \(u \) itself is nullhomotopic, because \(I^{\otimes n+1} \otimes X \) is \(n \)-connected. To check this, we note that since \(X \) is connective it suffices to show that \(K \) is connected: that is, we have \(\pi_i K \simeq 0 \) for \(i \leq 0 \). This follows from the long exact sequence associated to the fiber sequence

\[
I \to S \to MU,
\]

since the map \(\pi_i S \to MU \) is bijective for \(i \leq 0 \) and surjective when \(i = 1 \).

Proof of Proposition 11. Let \(X \) be a connective spectrum. We have a fiber sequence

\[
C_n(X) \to X \to L_{E(n)} X
\]

where \(X \) is MU-convergent by Lemma 16 and \(L_{E(n)}(X) \) is MU-convergent by Lemma 15. It follows from Lemma 13 that \(C_n(X) \) is MU-convergent.