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Definition 1. Let R be a commutative ring and let L be an invertible R-module. An L-twisted formal
group law is a formal series

f(x, y) =
∑

ai,jx
iyj

where ai,j ∈ L⊗(i+j−1) which satisfies the identities

f(x, y) = f(y, x) f(x, 0) = x f(x, f(y, z)) = f(f(x, y), z).

When L = R, an L-twisted formal group law is the same thing as a formal group law over R. Every L-
twisted formal group law f(x, y) determines a formal group Gf . More precisely, f defines a group structure on
the functor Spf R[[L]] = Spf(

∏
n L⊗n) given by A 7→ HomR(L,

√
A), where

√
A denotes the ideal consisting

of nilpotent elements of A. Note that the fiber of the map

(Spf R[[L]])(R[ε/ε2])→ (Spf R[[L]])(R)

is the collection of R-linear maps L→ εR/ε2R: that is, it is the R-module L−1. In other words, if f is any
L-twisted formal group law, there is a canonical isomorphism ηf : gGf

' L−1, where gGf
denotes the Lie

algebra over Gf . Conversely, we have the following:

Lemma 2. Let R be a commutative ring and let G be a formal group over R with Lie algebra g. Then there
exists a g−1-twisted formal group law f and an isomorphism Gf ' G lifting the isomorphism ηf : gGf

' g.

Proof. We first suppose that G is coordinatizable. In particular, we can choose an isomorphism α : g ' R.
We also have an isomorphism β : G ' Gf for some formal group law f(x, y) ∈ R[[x, y]]. Replacing f by
λ−1f(λx, λy) for some invertible constant λ, we can ensure that the composite map

R
α' g

β
' Gf

ηf' R

is the identity.
Let G denote the affine R-scheme which carries every R-algebra A to the group of power series of the

form
g(t) = t+ b1t

2 + b2t
3 + · · ·

where bn ∈ L⊗n, and let P be the affine R-scheme which carries every R-algebra A to the collection of all
pairs (f, β), where f is an (L⊗RA)-twisted formal group law and β is an isomorphism of Gf ' G over SpecA
which lifts the isomorphism ηf . There is an obvious action of G on P , and the above argument shows that
P is a locally trivial G-torsor with respect to the Zariski topology. To prove the Lemma, we wish to show
that P (R) is trivial.

For each n ≥ 1, we let Gn denote the subgroup scheme of G consisting of those power series such that
bi = 0 for i ≤ n. Then P ' lim←−P/Gn, and P/G0 ' ∗. To prove that P (R) is nonempty, it will suffice to
show that each of the maps P/Gn(R)→ P/Gn−1(R) is surjective. The obstruction to surjectivity lies in the
group

H1(SpecR;Gn/Gn−1) ' H1(SpecR; L⊗n)

. This group is trivial, since L⊗n is a quasi-coherent sheaf on SpecR.
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Remark 3. Let R be a commutative ring and let L be an invertible R-module. The data of an L-twisted
formal group law over R is equivalent to the data of a graded formal group law over the ring

⊕
n∈Z L⊗n,

where L⊗n has degree 2n. That is, it is equivalent to giving a map of graded rings L→
⊕

n∈Z L⊗n.

Remark 4. Let f be an L-twisted formal group law over a commutative ring R. The following conditions
are equivalent:

(1) The associated formal group Gf is classified by a flat map q : SpecR→MFG.

(2) The graded L-module
⊕

L⊗n is Landweber-exact.

By Landweber’s theorem, condition (2) is equivalent to the sum
⊕

L⊗n being flat over MFG. In particular,
this implies that L⊗0 ' R is flat over MFG, so that (2) ⇒ (1). The converse follows from the observation
that

⊕
L⊗n is flat over R.

In the situation of Remark 4, we can apply Landweber’s theorem to obtain a spectrum ER, whose
underlying homology theory is given by (ER)∗(X) = MU∗(X)⊗L (

⊕
n L⊗n).

Example 5. Let R be the Lazard ring L and let L = R be trivial, so that
⊕

n L⊗n can be identified with
L[β±1]. Then the above construction applies to produce a spectrum EL whose homology theory is given by

(EL)∗(X) = MU∗(X)⊗L L[β±1] ' MU∗(X)[β±1].

This spectrum is called the periodic complex bordism spectra, and will be denoted by MP. Just as MU can
be realized as the Thom spectrum of the universal virtual complex bundle of rank 0 over BU , MP can be
realized as the Thom spectrum of the universal virtual complex bundle of arbitrary rank over the space
BU × Z. We have MP0(X) = MUeven(X).

Now suppose more generally, we are given a L-twisted formal group law f over a commutative ring R
satisfying the conditions of Remark 4. If we choose an isomorphism L ' R, then we can identify f with a
formal group law classified by a map L→ R, and

⊕
n L⊗n with the ring R[β±1]. Then the homology theory

ER is given by
(ER)∗(X) = MU∗(X)⊗L R[β±1] ' MP∗(X)⊗L R.

In particular, we have (ER)0(X) = MP0(X)⊗L R = MUeven(X)⊗L R.
The above calculation can be expressed in a more invariant way. Recall that to any spectrum X we

can associate a quasi-coherent sheaf FX on MFG, whose restriction to SpecL is given by MUevenX. Then
(MUevenX)⊗L R is the pullback of FX along the map q : SpecR→MFG. From this description, it is clear
that the homology theory (ER)∗ depends only on the formal group Gf (or equivalently, the map q), and not
on the particular choice of formal group law f . This calculation globalizes as follows:

Proposition 6. Let q : SpecR→MFG be a flat map. Then there exists a spectrum ER which is determined
up to canonical isomorphism (in the homotopy category of spectra) by its underlying homology theory, which
is given by (ER)0(X) = q∗ FX (so that, more generally, (ER)n(X) = (ER)0(Σ−nX) = q∗ FΣ−nX).

Remark 7. Suppose we have a commutative diagram

SpecR′

q′

$$IIIIIIIII
// SpecR

q
zzuuuuuuuuu

MFG

where q and q′ are flat: that is, we have a Landweber-exact formal group over R whose restriction along a
map of commutative rings R→ R′ is also Landweber-exact. Then we get an evident map ER → ER′ (which
is unique up to homotopy, by the results of the previous lecture).
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Proposition 8. Suppose we are given flat maps q : SpecR → MFG and q′ : SpecR′ → MFG. Then the
smash product ER ⊗ ER′ is homotopy equivalent to EB, where B fits into a pullback diagram

SpecB //

��

SpecR

��
SpecR′ // MFG .

Proof. It is clear that SpecB is flat over MFG. For simplicity, we will suppose that q and q′ classify formal
groups which admit coordinates, given by maps L→ R and L→ R′. Note that

MP0(MP) ' MUeven(MP) ' MU∗(MU)[b±1
0 ] ' MU∗[b±1

0 , b1, . . .].

Using this calculation, one sees that the diagram

Spec MP0 MU //

��

SpecL

��
SpecL // MFG

is a pullback square, so that B ' R⊗L MP0 MP⊗LR′.
Now let X be any spectrum. We have

(ER ⊗ ER′)0(X) ' (ER)0(ER′ ⊗X) (1)
' R⊗L MP0(ER′ ⊗X) (2)
' R⊗L (ER′)0(MP⊗X) (3)
' R⊗L MP0(MP⊗X)⊗L R′ (4)
' R⊗L (MP⊗MP)0X ⊗L R′. (5)

where (MP⊗MP)0X is the pullback of FX to Spec MP0 MP ' SpecL×MFG SpecL. It follows that (ER ⊗
ER′)0X is the pullback of FX to SpecB, thus giving a canonical homotopy equivalence ER⊗ER′ ' EB .

Corollary 9. For any flat map SpecR→MFG, there is a canonical multiplication ER⊗ER → ER, making
ER into a commutative and associative algebra in the homotopy category of spectra.

Proof. Form a pullback diagram
SpecB //

��

SpecR

��
SpecR // MFG .

There is an evident diagonal map SpecR→ SpecB. By Remark 7, this induces a map

ER ⊗ ER ' EB → ER.

The commutativity and associativity properties of this construction are evident.

Let q : SpecR → MFG be a flat map classifying a formal group with Lie algebra g, and let ER the
associated ring spectrum. By construction, we have

πnER '

{
gk if n = −2k
0 if n = −2k + 1.

Let us now axiomatize this structural phenomenon:
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Definition 10. Let E be a ring spectrum. We will say that E is even periodic if the following conditions
are satisfied:

(1) The homotopy groups πiE vanish when i is odd.

(2) The map π2E ⊗π0E π−2E → π0E is an isomorphism (so that, in particular, π2E is an invertible
E-module L, and we have π2nE ' L⊗n for all n).

If E is an even periodic ring spectrum, then E is automatically complex-orientable, so we obtain a formal
group G over π∗E. However, in the periodic case we can do better: since E∗(CP∞) ' E0(CP∞)⊗π0E π∗E,
we get a formal group Spf E0(CP∞) over the commutative ring R = π0E, whose restriction to π∗E is
the formal group we have been discussing earlier in this course. This formal group is classified by a map
q : SpecR→MFG.

We can summarize the situation as follows:

Proposition 11. Let C be the category of pairs (R, η), where R is a commutative ring and η : SpecR→MFG

is a flat map (that is, η corresponds to a Landweber-exact formal group over SpecR). Then the construction
R 7→ ER determines a fully faithful embedding Φ of C into the category of commutative algebras in the
homotopy category of spectra. A ring spectrum E belongs to the essential image of this embedding if and only
if E is even periodic, and the induced map π0E →MFG is flat.

To prove Proposition 11, we note that the construction E 7→ (π0E,Spf E0(CP∞)) provides a left inverse
to Φ. What is not entirely clear is that this construction is also right-inverse to Φ: that is, if E is an even
periodic ring spectrum which determines a map q : Specπ0E = SpecR→MFG, can we identify E with the
ring spectrum ER? Choose a complex orientation on E, given by a map of ring spectra MU → E which
induces a map of graded rings φ : L→ π∗E. Then the homology theory ER is given by

(ER)∗(X) = MU∗(X)⊗L (π∗E).

We get an evident map of homology theories (ER)∗(X)→ E∗(X). This map is an isomorphism by construc-
tion when X is a point. Since E is even and ER is Landweber exact, the results of the previous lecture show
that we get a map of spectra ER → E which is well-defined up to homotopy equivalence. This map induces
an isomorphism π∗ER → π∗E by construction, and is therefore an equivalence of spectra; it is easy to see
that this equivalence is compatible with the ring structures on ER and E.
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