Even Periodic Cohomology Theories (Lecture 18)

April 27, 2010

Definition 1. Let R be a commutative ring and let \mathcal{L} be an invertible R-module. An \mathcal{L} -twisted formal group law is a formal series

$$f(x,y) = \sum a_{i,j} x^i y^j$$

where $a_{i,j} \in \mathcal{L}^{\otimes (i+j-1)}$ which satisfies the identities

$$f(x,y) = f(y,x)$$
 $f(x,0) = x$ $f(x,f(y,z)) = f(f(x,y),z).$

When $\mathcal{L} = R$, an \mathcal{L} -twisted formal group law is the same thing as a formal group law over R. Every \mathcal{L} -twisted formal group law f(x, y) determines a formal group \mathcal{G}_f . More precisely, f defines a group structure on the functor $\operatorname{Spf} R[[\mathcal{L}]] = \operatorname{Spf}(\prod_n \mathcal{L}^{\otimes n})$ given by $A \mapsto \operatorname{Hom}_R(\mathcal{L}, \sqrt{A})$, where \sqrt{A} denotes the ideal consisting of nilpotent elements of A. Note that the fiber of the map

$$(\operatorname{Spf} R[[\mathcal{L}]])(R[\epsilon/\epsilon^2]) \to (\operatorname{Spf} R[[\mathcal{L}]])(R)$$

is the collection of *R*-linear maps $\mathcal{L} \to \epsilon R/\epsilon^2 R$: that is, it is the *R*-module \mathcal{L}^{-1} . In other words, if *f* is any \mathcal{L} -twisted formal group law, there is a canonical isomorphism $\eta_f : \mathfrak{g}_{\mathfrak{S}_f} \simeq \mathcal{L}^{-1}$, where $\mathfrak{g}_{\mathfrak{S}_f}$ denotes the Lie algebra over \mathfrak{S}_f . Conversely, we have the following:

Lemma 2. Let R be a commutative ring and let \mathcal{G} be a formal group over R with Lie algebra \mathfrak{g} . Then there exists a \mathfrak{g}^{-1} -twisted formal group law f and an isomorphism $\mathcal{G}_f \simeq \mathcal{G}$ lifting the isomorphism $\eta_f : \mathfrak{g}_{\mathcal{G}_f} \simeq \mathfrak{g}$.

Proof. We first suppose that \mathcal{G} is coordinatizable. In particular, we can choose an isomorphism $\alpha : \mathfrak{g} \simeq R$. We also have an isomorphism $\beta : \mathcal{G} \simeq \mathcal{G}_f$ for some formal group law $f(x, y) \in R[[x, y]]$. Replacing f by $\lambda^{-1}f(\lambda x, \lambda y)$ for some invertible constant λ , we can ensure that the composite map

$$R \stackrel{\alpha}{\simeq} \mathfrak{g} \stackrel{\beta}{\simeq} \mathfrak{G}_{\mathfrak{f}} \stackrel{\eta_f}{\simeq} R$$

is the identity.

Let G denote the affine R-scheme which carries every R-algebra A to the group of power series of the form

$$g(t) = t + b_1 t^2 + b_2 t^3 + \cdots$$

where $b_n \in \mathcal{L}^{\otimes n}$, and let P be the affine R-scheme which carries every R-algebra A to the collection of all pairs (f, β) , where f is an $(\mathcal{L} \otimes_R A)$ -twisted formal group law and β is an isomorphism of $\mathcal{G}_f \simeq \mathcal{G}$ over Spec Awhich lifts the isomorphism η_f . There is an obvious action of G on P, and the above argument shows that P is a locally trivial G-torsor with respect to the Zariski topology. To prove the Lemma, we wish to show that P(R) is trivial.

For each $n \ge 1$, we let G_n denote the subgroup scheme of G consisting of those power series such that $b_i = 0$ for $i \le n$. Then $P \simeq \lim_{n \to \infty} P/G_n$, and $P/G_0 \simeq *$. To prove that P(R) is nonempty, it will suffice to show that each of the maps $P/G_n(R) \to P/G_{n-1}(R)$ is surjective. The obstruction to surjectivity lies in the group

$$\mathrm{H}^{1}(\operatorname{Spec} R; G_{n}/G_{n-1}) \simeq \mathrm{H}^{1}(\operatorname{Spec} R; \mathcal{L}^{\otimes n})$$

. This group is trivial, since $\mathcal{L}^{\otimes n}$ is a quasi-coherent sheaf on Spec R.

Remark 3. Let R be a commutative ring and let \mathcal{L} be an invertible R-module. The data of an \mathcal{L} -twisted formal group law over R is equivalent to the data of a graded formal group law over the ring $\bigoplus_{n \in \mathbb{Z}} \mathcal{L}^{\otimes n}$, where $\mathcal{L}^{\otimes n}$ has degree 2n. That is, it is equivalent to giving a map of graded rings $L \to \bigoplus_{n \in \mathbb{Z}} \mathcal{L}^{\otimes n}$.

Remark 4. Let f be an \mathcal{L} -twisted formal group law over a commutative ring R. The following conditions are equivalent:

- (1) The associated formal group \mathcal{G}_f is classified by a flat map $q: \operatorname{Spec} R \to \mathcal{M}_{\mathrm{FG}}$.
- (2) The graded *L*-module $\bigoplus \mathcal{L}^{\otimes n}$ is Landweber-exact.

By Landweber's theorem, condition (2) is equivalent to the sum $\bigoplus \mathcal{L}^{\otimes n}$ being flat over \mathcal{M}_{FG} . In particular, this implies that $\mathcal{L}^{\otimes 0} \simeq R$ is flat over \mathcal{M}_{FG} , so that (2) \Rightarrow (1). The converse follows from the observation that $\bigoplus \mathcal{L}^{\otimes n}$ is flat over R.

In the situation of Remark 4, we can apply Landweber's theorem to obtain a spectrum E_R , whose underlying homology theory is given by $(E_R)_*(X) = \mathrm{MU}_*(X) \otimes_L (\bigoplus_n \mathcal{L}^{\otimes n}).$

Example 5. Let R be the Lazard ring L and let $\mathcal{L} = R$ be trivial, so that $\bigoplus_n \mathcal{L}^{\otimes n}$ can be identified with $L[\beta^{\pm 1}]$. Then the above construction applies to produce a spectrum E_L whose homology theory is given by

$$(E_L)_*(X) = \mathrm{MU}_*(X) \otimes_L L[\beta^{\pm 1}] \simeq \mathrm{MU}_*(X)[\beta^{\pm 1}].$$

This spectrum is called the *periodic complex bordism spectra*, and will be denoted by MP. Just as MU can be realized as the Thom spectrum of the universal virtual complex bundle of rank 0 over BU, MP can be realized as the Thom spectrum of the universal virtual complex bundle of arbitrary rank over the space $BU \times \mathbf{Z}$. We have $MP_0(X) = MU_{even}(X)$.

Now suppose more generally, we are given a \mathcal{L} -twisted formal group law f over a commutative ring R satisfying the conditions of Remark 4. If we choose an isomorphism $\mathcal{L} \simeq R$, then we can identify f with a formal group law classified by a map $L \to R$, and $\bigoplus_n \mathcal{L}^{\otimes n}$ with the ring $R[\beta^{\pm 1}]$. Then the homology theory E_R is given by

$$(E_R)_*(X) = \mathrm{MU}_*(X) \otimes_L R[\beta^{\pm 1}] \simeq \mathrm{MP}_*(X) \otimes_L R.$$

In particular, we have $(E_R)_0(X) = MP_0(X) \otimes_L R = MU_{even}(X) \otimes_L R$.

The above calculation can be expressed in a more invariant way. Recall that to any spectrum X we can associate a quasi-coherent sheaf \mathcal{F}_X on $\mathcal{M}_{\mathrm{FG}}$, whose restriction to $\operatorname{Spec} L$ is given by $\operatorname{MU}_{\mathrm{even}} X$. Then $(\operatorname{MU}_{\mathrm{even}} X) \otimes_L R$ is the pullback of \mathcal{F}_X along the map $q: \operatorname{Spec} R \to \mathcal{M}_{\mathrm{FG}}$. From this description, it is clear that the homology theory $(E_R)_*$ depends only on the formal group \mathcal{G}_f (or equivalently, the map q), and not on the particular choice of formal group law f. This calculation globalizes as follows:

Proposition 6. Let q: Spec $R \to M_{FG}$ be a flat map. Then there exists a spectrum E_R which is determined up to canonical isomorphism (in the homotopy category of spectra) by its underlying homology theory, which is given by $(E_R)_0(X) = q^* \mathfrak{F}_X$ (so that, more generally, $(E_R)_n(X) = (E_R)_0(\Sigma^{-n}X) = q^* \mathfrak{F}_{\Sigma^{-n}X}$).

Remark 7. Suppose we have a commutative diagram

where q and q' are flat: that is, we have a Landweber-exact formal group over R whose restriction along a map of commutative rings $R \to R'$ is also Landweber-exact. Then we get an evident map $E_R \to E_{R'}$ (which is unique up to homotopy, by the results of the previous lecture).

Proposition 8. Suppose we are given flat maps $q : \operatorname{Spec} R \to \mathcal{M}_{FG}$ and $q' : \operatorname{Spec} R' \to \mathcal{M}_{FG}$. Then the smash product $E_R \otimes E_{R'}$ is homotopy equivalent to E_B , where B fits into a pullback diagram

Proof. It is clear that Spec B is flat over \mathcal{M}_{FG} . For simplicity, we will suppose that q and q' classify formal groups which admit coordinates, given by maps $L \to R$ and $L \to R'$. Note that

$$\mathrm{MP}_{0}(\mathrm{MP}) \simeq \mathrm{MU}_{\mathrm{even}}(\mathrm{MP}) \simeq \mathrm{MU}_{*}(\mathrm{MU})[b_{0}^{\pm 1}] \simeq \mathrm{MU}_{*}[b_{0}^{\pm 1}, b_{1}, \ldots].$$

Using this calculation, one sees that the diagram

is a pullback square, so that $B \simeq R \otimes_L MP_0 MP \otimes_L R'$.

Now let X be any spectrum. We have

$$(E_R \otimes E_{R'})_0(X) \simeq (E_R)_0(E_{R'} \otimes X) \tag{1}$$

$$\simeq R \otimes_L \operatorname{MP}_0(E_{R'} \otimes X) \tag{2}$$

$$\simeq R \otimes_L (E_{R'})_0(\mathrm{MP} \otimes X) \tag{3}$$

$$\simeq R \otimes_L \mathrm{MP}_0(\mathrm{MP} \otimes X) \otimes_L R' \tag{4}$$

$$\simeq R \otimes_L (\mathrm{MP} \otimes \mathrm{MP})_0 X \otimes_L R'.$$
(5)

where $(MP \otimes MP)_0 X$ is the pullback of \mathcal{F}_X to Spec $MP_0 MP \simeq \text{Spec } L \times_{\mathcal{M}_{FG}} \text{Spec } L$. It follows that $(E_R \otimes E_{R'})_0 X$ is the pullback of \mathcal{F}_X to Spec B, thus giving a canonical homotopy equivalence $E_R \otimes E_{R'} \simeq E_B$. \Box

Corollary 9. For any flat map Spec $R \to \mathcal{M}_{FG}$, there is a canonical multiplication $E_R \otimes E_R \to E_R$, making E_R into a commutative and associative algebra in the homotopy category of spectra.

Proof. Form a pullback diagram

There is an evident diagonal map $\operatorname{Spec} R \to \operatorname{Spec} B$. By Remark 7, this induces a map

$$E_R \otimes E_R \simeq E_B \to E_R$$

The commutativity and associativity properties of this construction are evident.

Let $q : \operatorname{Spec} R \to \mathcal{M}_{FG}$ be a flat map classifying a formal group with Lie algebra \mathfrak{g} , and let E_R the associated ring spectrum. By construction, we have

$$\pi_n E_R \simeq \begin{cases} \mathfrak{g}^k & \text{if } n = -2k \\ 0 & \text{if } n = -2k+1 \end{cases}$$

Let us now axiomatize this structural phenomenon:

Definition 10. Let E be a ring spectrum. We will say that E is *even periodic* if the following conditions are satisfied:

- (1) The homotopy groups $\pi_i E$ vanish when *i* is odd.
- (2) The map $\pi_2 E \otimes_{\pi_0 E} \pi_{-2} E \to \pi_0 E$ is an isomorphism (so that, in particular, $\pi_2 E$ is an invertible *E*-module \mathcal{L} , and we have $\pi_{2n} E \simeq \mathcal{L}^{\otimes n}$ for all *n*).

If E is an even periodic ring spectrum, then E is automatically complex-orientable, so we obtain a formal group \mathcal{G} over π_*E . However, in the periodic case we can do better: since $E^*(\mathbb{CP}^{\infty}) \simeq E^0(\mathbb{CP}^{\infty}) \otimes_{\pi_0 E} \pi_*E$, we get a formal group Spf $E^0(\mathbb{CP}^{\infty})$ over the commutative ring $R = \pi_0 E$, whose restriction to π_*E is the formal group we have been discussing earlier in this course. This formal group is classified by a map $q: \operatorname{Spec} R \to \mathcal{M}_{\mathrm{FG}}$.

We can summarize the situation as follows:

Proposition 11. Let \mathbb{C} be the category of pairs (R, η) , where R is a commutative ring and η : Spec $R \to \mathcal{M}_{FG}$ is a flat map (that is, η corresponds to a Landweber-exact formal group over Spec R). Then the construction $R \mapsto E_R$ determines a fully faithful embedding Φ of \mathbb{C} into the category of commutative algebras in the homotopy category of spectra. A ring spectrum E belongs to the essential image of this embedding if and only if E is even periodic, and the induced map $\pi_0 E \to \mathcal{M}_{FG}$ is flat.

To prove Proposition 11, we note that the construction $E \mapsto (\pi_0 E, \operatorname{Spf} E^0(\mathbb{CP}^\infty))$ provides a left inverse to Φ . What is not entirely clear is that this construction is also right-inverse to Φ : that is, if E is an even periodic ring spectrum which determines a map $q: \operatorname{Spec} \pi_0 E = \operatorname{Spec} R \to \mathcal{M}_{FG}$, can we identify E with the ring spectrum E_R ? Choose a complex orientation on E, given by a map of ring spectra $\operatorname{MU} \to E$ which induces a map of graded rings $\phi: L \to \pi_* E$. Then the homology theory E_R is given by

$$(E_R)_*(X) = \mathrm{MU}_*(X) \otimes_L (\pi_* E).$$

We get an evident map of homology theories $(E_R)_*(X) \to E_*(X)$. This map is an isomorphism by construction when X is a point. Since E is even and E_R is Landweber exact, the results of the previous lecture show that we get a map of spectra $E_R \to E$ which is well-defined up to homotopy equivalence. This map induces an isomorphism $\pi_*E_R \to \pi_*E$ by construction, and is therefore an equivalence of spectra; it is easy to see that this equivalence is compatible with the ring structures on E_R and E.