Math 221: Problem Set 11

(1) Let $f : A \to B$ be a map of commutative rings, let μ denote the multiplication map $\mu : B \otimes_A B \to B$, and let I be the kernel of μ. Show that the construction

$$b \mapsto 1 \otimes b - b \otimes 1$$

determines an A-linear derivation from B into I/I^2, which induces an isomorphism of B-modules $\Omega_{B/A} \cong I/I^2$.

(2) Let k be a field and let \overline{k} be its algebraic closure. Show that $\Omega_{\overline{k}/k} \cong 0$ (note that \overline{k} need not be a separable extension of k).

(3) Let R be a complete local Noetherian ring having maximal ideal m. Assume that the field R/m has characteristic zero. Show that there exists a subfield $k \subseteq R$ such that the composite map $\alpha : k \to R \to R/m$ is an isomorphism. (Hint: use Zorn’s lemma to choose k maximal among subfields of R, and use Hensel’s lemma to show that α is an isomorphism).

(4) Let $f : A \to B$ and $g : A \to A'$ be maps of commutative rings, and set $B' = B \otimes_A A'$. Construct an isomorphism $\Omega_{B'/A'} \cong \Omega_{B/A} \otimes_B B'$.