(1) Let \(f : R \to R' \) be a flat map of commutative rings, and suppose that \(f \) induces a surjection \(F : \text{Spec } R' \to \text{Spec } R \). Show that \(F \) is a quotient map: that is, a subset \(U \subseteq \text{Spec } R \) is open if and only if \(F^{-1}U \) is an open subset of \(\text{Spec } R' \).

(2) Let \(R \) be a local Noetherian ring, and let \(R^\vee \) denote the completion of \(R \) (with respect to its maximal ideal). Show that the depth of \(R \) coincides with the depth of \(R^\vee \).

(3) Let \(R \) be a local Noetherian ring. Show that if \(R \) is Cohen-Macaulay, then there exists a (nonzero) finitely generated \(R \)-module \(M \) whose length and projective dimension are both finite.

(4) Let \(R \) be a local Noetherian ring which contains the field \(\mathbb{Q} \) of rational numbers, let \(G \) be a finite group acting on \(R \), and let \(R^G \subseteq R \) be the fixed points for the action of \(G \). Show that \(R^G \) is also a local Noetherian ring, which is Cohen-Macaulay if \(R \) is Cohen-Macaulay.