Throughout this lecture, we fix a perfectoid field C^p of characteristic p. Our goal in this lecture is to give an “intrinsic” description of $A_{\text{inf}} = W(\mathcal{O}^p_C)$ as a subring of B: roughly speaking, it consists of “holomorphic” functions on Y whose value at any point $y \in Y$ belongs to the valuation ring \mathcal{O}_{K_y} of the perfectoid field K_y corresponding to y.

Theorem 1. Let f be a nonzero element of B. The following conditions are equivalent:

1. For each $\rho \in (0, 1)$, we have $|f|_\rho \leq 1$.
2. The element f belongs to the subring $A_{\text{inf}} \subseteq B$.

Corollary 2. Let f be a nonzero element of B. Then:

- The element f belongs to the localization $A_{\text{inf}}\left[\frac{1}{p}\right]$ if and only if there exists an integer n such that $|f|_\rho \leq \rho^n$ for all $\rho \in (0, 1)$.
- The element f belongs to the localization $A_{\text{inf}}\left[\frac{1}{p^2}, \frac{1}{p}\right]$ if and only if there exists a constant $C > 0$ satisfying $|f|_\rho \leq C \rho^n$ for all $\rho \in (0, 1)$.
- The element f belongs to the localization $A_{\text{inf}}\left[\frac{1}{p^3}, \frac{1}{p^2}, \frac{1}{p}\right]$ if and only if there exists a constant $C > 0$ and an integer n satisfying $|f|_\rho \leq C \rho^n$ for all $\rho \in (0, 1)$.

We will deduce Theorem 1 from the following weaker assertion:

Lemma 3. Let f be an element of B. Suppose that there exists an integer m such that $|f|_\rho \leq \rho^m$ for all $0 < \rho < 1$. Then we can write $f = [c]p^m + g$, where $c \in \mathcal{O}^p_C$ and g satisfies an inequality of the form $|g|_\rho \leq \rho^{m+1}$.

Proof of Theorem 1 from Lemma 3. The implication $(2) \Rightarrow (1)$ is immediate. Conversely, suppose that (1) is satisfied, and set $f_0 = f$. Applying Lemma 3, we can write $f_0 = [c_0] + f_1$, where $[c_0] \in \mathcal{O}^p_C$, and f_1 satisfies $|f_1|_\rho \leq \rho$ for all $\rho \in (0, 1)$. Applying Lemma 3 again, we can write $f_1 = [c_1]p + f_2$, where $[c_1] \in \mathcal{O}^p_C$, and f_2 satisfies $|f_2|_\rho \leq \rho$ for all $\rho \in (0, 1)$. Continuing in this way, we obtain a sequence of elements $f_0, f_1, f_2, \ldots \in B$ and $c_0, c_1, c_2, \ldots \in \mathcal{O}^p_C$, satisfying

$$f_0 = [c_0] + [c_1]p + \cdots + [c_{n-1}]p^{n-1} + f_n$$

with $|f_n|_\rho \leq \rho^n$.

Note that the sequence $\{f_n\}_{n \geq 0}$ converges to zero with respect to the each of the Gauss norms $| \bullet |_\rho$. It follows that the infinite sum $\sum_{n \geq 0}[c_n]p^n$ converges in B to f, so that f belongs to A_{inf} as desired. \qed
Proof of Lemma 3. Replacing \(f \) by \(\frac{f}{\rho^n} \), we can reduce to the case \(m = 0 \). In this case, we have an element \(f \in B \) satisfying \(|f|_\rho \leq 1 \) for all \(\rho \in (0,1) \); we wish to write \(f = [c] + g \) for \(c \in \mathcal{O}_C^\flat \), where \(g \) satisfies \(|g|_\rho \leq \rho \) for all \(\rho \in (0,1) \).

Choose a sequence \(f_1, f_2, \ldots \in A_{\text{inf}}[\frac{1}{p}, \frac{1}{|\rho|}] \) which converges to \(f \) in \(B \). Each \(f_i \) then admits a unique Teichmüller expansion
\[
f_i = \sum_{n \geq -\infty} [c_{n,i}] p^n.
\]
Set \(f_i^+ = \sum_{n \geq 0} [c_{n,i}] p^n \). We claim that the sequence \(f_1^+, f_2^+, \ldots \) also converges to \(f \) in \(B \). To prove this, we must show that for each \(\rho \in (0,1) \), we have
\[
\lim_{i \to \infty} |f_i - f_i^+|_\rho = 0.
\]

Let \(\epsilon \) be a small positive real number. Then the sequence \(f_1, f_2, \ldots \) converges to \(f \) with respect to the Gauss norm \(| \cdot |_{\epsilon,\rho} \). It follows that, for \(i \) sufficiently large (depending on \(\epsilon \)), we have
\[
|f_i|_{\epsilon,\rho} = |f|_{\epsilon,\rho} \leq 1.
\]
For such \(i \), we have
\[
|c_{-n,i}|_{C,\rho} (\epsilon \rho)^{-n} \leq 1.
\]
If \(n \) is positive, this gives
\[
|c_{-n,i}|_{C,\rho} \rho^{-n} \leq \epsilon^n \leq \epsilon.
\]
We therefore have
\[
|f_i - f_i^+|_\rho = \sup_{n > 0} (|c_{-n,i}|_{C,\rho} \rho^{-n}) \leq \epsilon
\]
for sufficiently large \(i \).

Replacing the sequence \(\{f_i\} \) with \(\{f_i^+\} \), we may assume that each \(f_i \) admits a Teichmüller expansion of the form
\[
f_i = \sum_{n \geq 0} [c_{n,i}] p^n.
\]
Then, for every pair of indices \(i \) and \(j \), the difference \(f_i - f_j \) admits a Teichmüller expansion of the form \([c_{0,i} - c_{0,j}] + \text{higher order terms} \). For any \(\rho \in (0,1) \), we have
\[
|f_i - f_j|_\rho \geq |c_{0,i} - c_{0,j}|_{C,\rho}.
\]
Since the sequence \(\{f_i\} \) is Cauchy with respect to the Gauss norm \(| \cdot |_{\rho} \), it follows that \(\{c_{0,i}\} \) is a Cauchy sequence in the field \(C^\flat \). Since \(C^\flat \) is complete, this Cauchy sequence converges to some element \(c \in C^\flat \). Moreover, for \(i \gg 0 \), we have
\[
|c_{0,i}|_{C^\flat} \leq |f_i|_\rho = |f|_\rho \leq 1,
\]
so that \(c_{0,i} \) belongs to \(\mathcal{O}_C^\flat \) (for \(i \gg 0 \)) and therefore \(c \in \mathcal{O}_C^\flat \).

Exercise 4. Show that, if \(\{c_i\} \) is a Cauchy sequence in \(\mathcal{O}_C^\flat \), converging to a point \(c \in \mathcal{O}_C^\flat \), then we have
\[
[c] = \lim_{i \to \infty} [c_i] \quad \text{in the ring } B.
\]
For each \(i \), set \(g_i = f_i - [c_{0,i}] = \sum_{n > 0} [c_{n,i}] p^n \). Applying the exercise, we see that the limit \(\lim_{i \to \infty} g_i \) exists and is given by
\[
\lim_{i \to \infty} g_i = (\lim_{i \to \infty} f_i) - (\lim_{i \to \infty} [c_{0,i}]) = f - [c].
\]
That is, we can write \(f = [c] + g \), where \(g = \lim_{i \to \infty} g_i \). We will complete the proof by showing that \(|g|_\rho \leq \rho \) for all \(\rho \in (0,1) \), or equivalently that \(v_s(g) \geq s \) for all \(s \in \mathbb{R}_{>0} \).
Let us assume that \(g \neq 0 \) (otherwise there is nothing to prove). Passing to a subsequence, we may then also assume that \(g_i \neq 0 \) for all \(i \). Each \(g_i \) admits a Teichmüller expansion where only positive powers of \(p \) occur, so that the piecewise linear function \(v_s(g_i) \) has strictly positive slopes. When restricted to any compact interval \(I \subseteq \mathbb{R}_{>0} \), the function \(v_s(g) \) agrees with \(v_s(g_i) \) for \(i \gg 0 \). It follows that the piecewise linear function \(s \mapsto v_s(g) \) also has strictly positive (and integral) slopes. Suppose, for a contradiction, that there exists some \(s > 0 \) such that \(v_s(g) < s \). Choose \(0 < s' < s \) such that \(v_s(g) - s + s' < 0 \). Since the function \(v_s(g) \) is piecewise linear with slopes \(\geq 1 \) everywhere, we have

\[
v_{s'}(g) \leq v_s(g) - s + s' < 0.
\]

Setting \(\rho' = e^{-s'} \), we have \(|g|_{\rho'} > 1 \). Then

\[
1 < |g|_{\rho'} = |f - [c]|_{\rho'} \leq \max(|f|_{\rho'}, |[c]|_{\rho'}) = \max(|f|_{\rho'}, |c|_{C'}) \leq 1,
\]

which is a contradiction. \(\square \)

From Theorem 1, it is easy to describe the invariant subring \(B^{\varphi=1} \subseteq B \):

Theorem 5. The unit map \(Q_p \to B^{\varphi=1} \) is an isomorphism.

Lemma 6. Let \(f \) be a nonzero element of \(B^{\varphi=1} \). Then there exists an integer \(n \) such that \(|f|_\rho = \rho^n \) for all \(0 < \rho < 1 \).

Proof. Note that for \(0 < \rho < 1 \), we have

\[
|f|^p_\rho = |\varphi(f)|_{\rho^p} = |f|_{\rho^p}.
\]

In other words, the function \(s \mapsto v_s(f) \) satisfies the identity \(v_{ps}(f) = pv_s(f) \). Differentiating both sides (on the left) with respect to \(s \) and dividing by \(p \), we obtain \(\partial_{-} v_{ps}(f) = \partial_{-} v_s(f) \). Since the function \(s \mapsto v_s(f) \) is concave, the function \(s \mapsto \partial_{-} v_s(f) \) is nondecreasing; the above equality implies that it is constant. In other words, \(s \mapsto v_s(f) \) is a linear function of \(s \), which we can write as \(v_s(f) = ns + r \) for some integer \(n \) and some real number \(r \). The equality \(v_{ps}(f) = pv_s(f) \) then implies that \(r = 0 \), so that \(v_s(f) = ns \) for all \(s > 0 \) and therefore \(|f|_\rho = \rho^n \) for all \(0 < \rho < 1 \). \(\square \)

Proof of Theorem 5. Let \(f \) be a nonzero element of \(B^{\varphi=1} \). It follows from Lemma 6 and Corollary 2 that \(f \) belongs to the subring \(\mathcal{A}_{\inf[\frac{1}{2}]} \subseteq B \). That is, \(f \) admits a unique Teichmüller expansion

\[
f = \sum_{n \gg -\infty} [c_n]p^n,
\]

where each \(c_n \) belongs to \(\mathcal{O}_{C'}^p \). We then have

\[
\sum_{n \gg -\infty} [c_n]p^n = f = \varphi(f) = \sum_{n \gg -\infty} [c^n_p]p^n,
\]

so that each coefficient \(c_n \) satisfies \(c_n = c^n_p \) in the field \(C'^p \), and therefore belongs to the finite field \(\mathbb{F}_p \subseteq C'^p \).

The equality \(f = \sum_{n \gg -\infty} [c_n]p^n \) now shows that \(f \) belongs to \(Q_p = W(\mathbb{F}_p)[\frac{1}{p}] \), as desired. \(\square \)